
FEDERAL RESERVE BANK OF SAN FRANCISCO 

WORKING PAPER SERIES 

Understanding Climate Damages: 
Consumption versus Investment 

 
Gregory Casey 

Williams College 

 

Stephie Fried 

Federal Reserve Bank of San Francisco 

CEPR 

 

Matthew Gibson  

Williams College  

IZA 

 

May 2024 

 
 

Working Paper 2022-21 
 

https://doi.org/10.24148/wp2022-21 

 
Suggested citation:  

Casey, Gregory, Stephie Fried, and Matthew Gibson. 2024. “Understanding Climate 

Damages: Consumption versus Investment.” Federal Reserve Bank of San Francisco 

Working Paper 2022-21. https://doi.org/10.24148/wp2022-21 

 

 

 

 

The views in this paper are solely the responsibility of the authors and should not be interpreted 

as reflecting the views of the Federal Reserve Bank of San Francisco or the Board of Governors 

of the Federal Reserve System. 



Understanding Climate Damages:
Consumption versus Investment

Gregory Casey (Williams College)
Stephie Fried (Federal Reserve Bank of San Francisco and CEPR)

Matthew Gibson (Williams College and IZA)

May 2024

Abstract
Existing climate-economy models assume climate change has equal impacts on the
productivity of firms that produce consumption and investment goods and services.
We develop a model of structural change to show that the split between damage to
consumption and investment productivity matters for the aggregate consequences of
climate change. When investment is more vulnerable to climate, we find smaller short-
run consumption losses than leading models suggest, but larger long-run consumption
losses. We provide a quantitative illustration of these effects for one type of climate
damage in the US economy: labor productivity losses from heat stress. We find
that accounting for heterogeneous damages increases the welfare cost of the climate
damage from heat stress by approximately 4 to 23%, depending on the discount factor.
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1 Introduction
Climate change affects the productivity of firms producing investment goods and
services differently from the productivity of firms producing consumption goods and
services. For example, construction firms produce investment goods and are more
vulnerable to climate change than retail firms, which primarily produce consumption
services. A long literature shows that distinguishing between consumption and in-
vestment productivity has important implications for understanding economic growth
(e.g., Greenwood et al., 1997; Grossman et al., 2017), comparative development (e.g.,
Hsieh and Klenow, 2007, 2010), trends in inequality (e.g., Krusell et al., 2000; Gross-
man et al., 2021), and business cycles (e.g., Fisher, 2006; Justiniano et al., 2010).
However, the existing macro literature on climate change abstracts from this dis-
tinction and instead uses aggregate damage functions that assume climate change
has equal impacts on consumption and investment productivity (e.g., Nordhaus and
Boyer, 2003; Golosov et al., 2014; Hassler et al., 2016, 2021; Barrage, 2020; Bar-
rage and Nordhaus, 2023). We develop a dynamic general equilibrium framework
that allows climate change to have different effects on consumption and investment
productivity. Our framework reveals that the standard aggregate damage function
approach can give misleading predictions about the impacts of climate change on
macroeconomic dynamics and welfare.

Before describing our framework, it is helpful to briefly review the concept of an
aggregate damage function, which is a key building block of existing macro climate-
economy models. Climate change has heterogeneous impacts on different sectors (e.g.,
Auffhammer, 2018). The purpose of the aggregate damage function is to tractably
combine these different impacts in order to study the dynamic effects of climate
change on the macroeconomy. To build aggregate damage functions, researchers take
the weighted average of more dis-aggregated damages, with weights given by shares
of gross domestic product (e.g., Nordhaus and Boyer, 2003; Barrage, 2020). The
weighted average of damages is applied uniformly across the economy. An important
concern with this approach is that the aggregation occurs outside of the model. In this
paper, we show that maintaining the distinction between damages to consumption
and investment productivity inside the model is important for understanding the very
dynamics that the macro climate-economy models are designed to study.
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We first develop an analytic model to show the importance of heterogeneous dam-
ages. The analytic model has a Solow (1956)-like structure with a constant savings
rate, but also has separate consumption and investment goods. In this setting, the
weights in the aggregate damage function are given by the consumption and invest-
ment shares of GDP. We show that these weights yield misleading predictions for the
effects of climate change on both short- and long-run consumption. In the short run,
the effect of climate change on consumption is entirely determined by the climate
damages to consumption productivity, instead of the weighted average of damages.
In the long run, because capital accumulates over time, the relative importance of
damages to investment productivity depends on the capital share of GDP and not on
the smaller investment share as assumed in the aggregate damage function. A direct
consequence of applying incorrect weights is that the aggregate damage function will
overstate short-run consumption losses and understate long-run consumption losses
when investment is more vulnerable to climate change. The opposite implications
hold if instead consumption is more vulnerable.

Building on the intuition from the analytic model, we next develop a richer model
of structural change that accounts for heterogeneous damages. Our model extends
the existing structural transformation literature in two ways (Herrendorf et al., 2013,
2014, 2021; Garcia-Santana et al., 2021). First, we model a more disaggregated econ-
omy that includes the construction and mining sectors, both of which are particularly
vulnerable to climate change, as well as the standard agriculture, manufacturing, and
services sectors. Second, we introduce climate damage into the model as sector-
specific reductions in productivity. Output from the five sectors is used to produce
final consumption and investment goods. Climate change endogenously has different
effects on consumption and investment productivity because their sectoral composi-
tions differ. For example, construction plays an important role in the production of
investment and no role in the production of consumption. As a result, climate dam-
age to construction productivity has a large impact on investment productivity and
no impact on consumption productivity. We calibrate the parameters of the growth
model to match the evolution of the sector shares of consumption and investment
value added from 1947-2019 in the U.S. economy. The calibrated model fits the data
closely.
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To illustrate the importance of incorporating heterogeneous damages in climate-
economy models, we use our richer model to analyze the impacts of one prominent
type of climate damage: labor productivity losses from heat stress (Heal and Park,
2016; Somanathan et al., 2021). We focus on this particular application of our model
because the damages from heat stress can be readily quantified from the existing
literature. When humans undertake physically intensive tasks, the body must re-
lease heat to maintain a safe internal temperature. Rising temperatures from climate
change make this physiological process more difficult, increasing the labor productiv-
ity losses in outdoor sectors, namely agriculture, mining, and construction. In the
United States, outdoor work accounts for a greater share of investment value added,
compared to consumption value added, largely because of construction. As a result,
the climate damage from heat stress will have a greater impact on investment pro-
ductivity. To parameterize the model, we take the relationship between heat stress
and labor productivity from Dunne et al. (2013), who estimate this relationship from
worker safety guidelines.1

We quantify the future impacts of climate damages from heat stress by compar-
ing two simulations of our model: a “no-climate-change” simulation where climate
remains constant after 2019 and a “climate-change” simulation where future temper-
ature follows a path consistent with Representative Concentration Pathway (RCP)
8.5. To highlight the importance of heterogeneous damages, we compare the impact of
climate change in our model with heterogeneous damages (HD model) to the impact
in an otherwise equivalent model in which climate change equally affects productiv-
ity in consumption and investment. We refer to this second model as the DICE-like
model because it follows the standard aggregate damage function approach pioneered
by Nordhaus’ DICE model (e.g., Nordhaus, 1993; Nordhaus and Boyer, 2003). We
construct the aggregate damage function in the DICE-like model by taking a weighted
average of the damages to the five sectors in the HD model, following the existing
literature (Nordhaus and Boyer, 2003; Barrage, 2020).2

1The Occupational Safety and Health Administration (OSHA) and the U.S. military have con-
sistent guidelines for the duration that various types of work can be safely performed at any given
temperature. These guidelines, in turn, are based on outcomes from physiological studies (Dunne
et al., 2013; Kjellstrom et al., 2018). The Biden Administration recently announced increases in
monitoring and enforcement of heat safety regulations and OSHA is developing new heat-related
worker safety regulations are in development (White House, 2023).

2The damage functions in recent iterations of macro climate-economy models are based on meta-
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The HD model predicts climate change will lead to a larger fall in the long-run
capital stock than the DICE-like model. For example, by 2200 climate change reduces
the capital stock by 5.4 percent in the HD model, compared to only 1.2 percent in
the DICE-like model. Intuitively, these differences arise because the climate damages
to investment productivity are larger than the damages to consumption productivity.
By applying the weighted average to all sectors, the aggregate damage function in
the DICE-like model understates damage to investment productivity, resulting in the
smaller predicted decline in capital. Thus, the impact of climate change on the capital
stock could be much larger than models with aggregate damage functions predict.

Similarly, accounting for heterogeneous damages also has important implications
for predicting the short- and long-run effects of climate change on consumption. The
HD model predicts that climate change will lead to smaller short-run decreases in
consumption, but larger long-run decreases than the DICE-like model. The decrease
in consumption caused by climate change depends on both the damage to consump-
tion productivity and on the level of capital. In the short run, the effect of climate
change on the capital stock is relatively small, and thus the consumption losses are
primarily determined by the damage to consumption productivity. The damage to
consumption productivity is smaller in the HD model, leading to the smaller short-
run losses. In the long run, the larger decrease in the capital stock in the HD model
dominates, causing consumption losses in HD model to exceed those in the DICE-like
model.

Our results have important implications for the welfare costs of climate change,
as measured by the consumption equivalent variation in lifetime utility. Previous
literature has established that the welfare costs of climate change are strongly sensitive
to discount factors, because consumption losses occur far in the future (e.g., Dietz and
Stern, 2008; Sterner and Persson, 2008). Compared to standard modeling approaches,
accounting for heterogenous damage decreases short-run losses and increases long-
run losses, making welfare costs even more sensitive to the discount factor. Using a
discount factor derived from the behavior of market participants, the welfare costs are

studies (or “research syntheses” of existing studies) (Barrage and Nordhaus, 2023). The underlying
studies include those that build aggregate damage functions as a weighted-average across sectors,
as well as those that use other approaches, like regressions of output per person on temperature
(Nordhaus, 2017; Piontek et al., 2021).
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approximately 4 percent larger in the HD model than in the DICE-like model. Using
instead a more Stern et al. (2006)-like discount factor that places greater weight on
future outcomes implies that the welfare costs of the climate damage from heat stress
are approximately 23 percent larger in the HD model. Ultimately, for any reasonable
discount factor, the welfare cost of the climate damage from heat stress are larger
than suggested by leading models with aggregate damage functions (Nordhaus and
Boyer, 2003; Golosov et al., 2014; Barrage, 2020; Barrage and Nordhaus, 2023).

We analyze two extensions of our core results. First, we discuss how the HD
model would compare to other approaches used to calculate damages in U.S. policy-
making (Hope, 2006; Anthoff and Tol, 2014; Climate Impact Lab, 2022; Rennert et al.,
2022b). These approaches implicitly assume climate change has no impact on invest-
ment productivity. Thus, comparing the HD model with DICE, which understates
the impact of climate change on investment productivity but does not eliminate it,
provides a lower bound on magnitudes of the differences between the HD model and
these alternate approaches. Second, we simulate a more extreme scenario for future
warming. Some scholars argue climate policy is best conceptualized as an insurance
policy against the worst possible outcomes (e.g., Weitzman, 2009; Wagner and Weitz-
man, 2015). We find temperature realizations from the right tail of the distribution
of possible climate outcomes increase the differences between the HD and DICE-like
models.

It is important to stress that we view our quantitative analysis as an illustration
of our main theoretical point. If climate damages vary by sector, then the climate
damages to consumption and investment will likely differ because the sectoral com-
position of consumption and investment differ. Our quantitative analysis uses the
case of heat stress to demonstrate that allowing for these heterogeneous damages can
have meaningful impacts on the short- and long-run consequences of climate change.
These same mechanisms would also apply to any type of climate damage that varies
across sectors. There is a rapidly growing literature that estimates climate damages
at the sector level (Auffhammer, 2018; Carleton and Greenstone, 2022). As new ev-
idence becomes available, the framework we present here can be used to aggregate
the findings from these papers to study the macroeconomic consequences of climate
change.
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Our paper is part of a long tradition of using growth models to study climate
change (Nordhaus, 1993; Nordhaus and Boyer, 2003; Golosov et al., 2014; Barrage,
2020; Barrage and Nordhaus, 2023). Within this literature, there is a small but
growing strand of work focusing on the relationship between climate and structural
change. Desmet and Rossi-Hansberg (2015) study reallocation between agriculture
and non-agriculture consumption sectors in a stylized model that includes both dy-
namics and spatial equilibrium. Casey et al. (2019) combine dynamic aspects of the
stylized model with the endogenous fertility theory of Galor and Mountford (2008) to
argue climate change will affect fertility rates and human capital accumulation. Nath
(2022) quantifies consumption reallocation in a static model of international trade.
While our model also includes structural change, our focus on damage heterogene-
ity across consumption and investment is new. Our model does include reallocation
within consumption, but we find it is not quantitatively important in the United
States. Consistent with this finding, the previous literature studying reallocation
within consumption focuses on outcomes in developing countries.

There is also a small strand of the literature focusing on the role of capital in
climate-economy models with aggregate production functions. Fankhauser and Tol
(2005) compare models without any capital — as in Hope (2006) and Anthoff and Tol
(2014) — to DICE-like models with aggregate production functions.3 Consistent with
our analysis, they find that endogenous capital dynamics play only a small role in
DICE-like models. We show that accounting for heterogeneous damages can greatly
increase the importance of capital dynamics. Karp et al. (2021) develop a model with
an aggregate production function and a concave production possibilities frontier to
study how climate policy and damage affect the relative price of capital and therefore
capital-holders’ incentives to invest in mitigation policy. In our model, climate change
affects the relative price of capital because of the heterogeneous damages, and we
study the implications of these damages for capital accumulation, growth, and welfare.

The paper proceeds as follows. Section 2 provides motivating evidence on the
different sectoral compositions of consumption and investment value added in the

3They also consider extensions where changes in the capital stock affect the long-run growth
rate of TFP or human capital through endogenous growth mechanisms. We abstract from these
channels, which would greatly increase the difference between our heterogeneous damage model and
DICE-like approaches.
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United States. Section 3 presents the analytic model, highlighting the importance of
differentiating between climate damages to consumption and investment productivity.
Section 4 describes the richer model, and Section 5.1 explains the calibration. Section
5.2 presents a quantitative illustration for the case of heat stress, and Section 6
concludes.

2 Empirical Motivation
Climate damage has different effects on the productivity of consumption and invest-
ment, because the sectoral composition of consumption and investment value added
differ and climate damages vary across sectors. Figure 1 plots the shares of value
added in consumption and investment, respectively, produced in each of five sectors:
agriculture, construction, energy and mining, manufacturing, and services.4,5 The fig-
ure highlights that the sectoral compositions of consumption and investment value
added are different. For example, 90 percent of consumption value added is produced
in the services sector, compared to only 55 percent of investment value added.

Many types of climate damage likely vary across these five sectors, implying that
the climate damage to consumption productivity will differ from the climate damage
to investment productivity. Our quantitative illustration focuses on one prominent
type of climate damage: labor productivity due to heat stress. Of the five sectors,
agriculture, construction, and mining, are more vulnerable to climate damage from
heat stress, because a substantial fraction of production in these sectors occurs out-
doors and cannot easily be moved indoors. In contrast, production in manufacturing
and services primarily occurs indoors. Firms in the indoor sectors can eliminate the
climate damage from heat stress at low cost through the use of air conditioning. Fig-
ure 1 reveals that a larger share of investment value added is produced in outdoor

4Unlike most studies of structural change, we model a separate construction sector, which is
particularly vulnerable to climate change. We have in mind the usual definition of construction: the
creation or improvement of structures, which is a type of investment. In the data, some construc-
tion is classified as consumption. This type of consumption makes up less that one percent of all
consumption value added. We re-classify this small subset of consumption as manufacturing, which
is the standard approach to handling construction in the existing literature (Herrendorf et al., 2021;
Garcia-Santana et al., 2021).

5To construct Figure 1, we divide US value-added into consumption and investment and further
sub-divide consumption and investment into the five sectors. The data are derived from the National
Income and Product Accounts for the U.S. economy in 2019 (see Appendix Section B.1).
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sectors, compared to consumption value added. All else constant, this comparison
implies that the climate damage from heat stress will be larger for investment pro-
ductivity than for consumption productivity.

Figure 1: Composition of Consumption and Investment Value Added

Agric
ultu

re

Constru
ctio

n
Mining

Manufacturin
g

Services
0

0.2

0.4

0.6

0.8

1

S
h
a
re

 o
f 
2
0
1
9
 U

S
 v

a
lu

e
 a

d
d
e
d

Investment

Consumption

Note: The blue and green bars plot the fraction of U.S. investment and consumption value added,
respectively, produced in each of the five sectors on the x-axis. The data are for 2019.

3 Simple Model and Intuition
Most existing climate-economy macro models are derived from the one-sector neoclas-
sical growth model (e.g., Nordhaus and Boyer, 2003; Golosov et al., 2014; Barrage,
2020; Barrage and Nordhaus, 2023). The key dynamic equations are

Y Agg
t =

(
DAgg(Tt)AtNt

)1−θ
Kθ

t , (1)

Y Agg
t = Ct +Xt, (2)

Kt+1 = Xt + (1− δ)Kt, (3)

U =
∞∑
t=0

βtu(Ct), (4)
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where θ, β ∈ (0, 1), Kt and Nt are aggregate capital and labor, respectively, Ct is con-
sumption, Xt is investment, Y Agg

t is output, U is lifetime utility of the representative
household, and u(·) is an increasing and concave period utility function. The variable
T denotes the state of the climate, and the function DAgg(T ) captures the impact of
climate on productivity, as shown in equation (1).6 Equation (2) implies that one unit
of the final good can always be transformed into one unit of either the consumption or
investment good, regardless of climate damages. Thus, this framework assumes that
climate change has an equal impact on the productivity of producing the consumption
and investment goods. The evidence presented in Section 2, however, suggests that
climate damages to investment and consumption productivity differ. Equations (3)
and (4) highlight the different roles that consumption and investment play in eco-
nomic dynamics. Consumption in any period contributes to utility directly, but has
no impact on future economic outcomes. Investment has no direct impact on utility
in the current period, but it influences future production levels, which can in turn be
used to generate consumption and utility in later periods.

To analytically explore the different consequences of climate damages to consump-
tion and investment productivity, we build a simple Solow (1956)-like growth model
with separate consumption and investment goods. We show that, for a given aggre-
gate damage function, the consequences of climate change depend on how damages
are split between consumption and investment. In other words, we show that the ag-
gregate damage function is insufficient for understanding the consequences of climate
change.

Consumption (C) and investment (X) are produced from Cobb-Douglas produc-
tion functions,

Ct = (DC(T )ACnCt)
1−θ kθ

Ct and Xt = (DX(T )AXnXt)
1−θ kθ

Xt, (5)

where for each J ∈ {C,X}, AJ is technology, nJt is labor inputs, and kJt is capital.
Again, T captures the state of the climate, and DJ(T ) is now a consumption- or
investment-specific damage function. With perfect competition, θ is equal to the

6These models also specify the links between climate change and economic activity. We take
climate change as exogenous and focus on the consequences, rather than the causes, of climate
change.
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capital share of income. Following Herrendorf et al. (2014, 2021), θ is common to
both production functions. As in equation (3), capital accumulates linearly from
investment with depreciation rate δ. There is free mobility of factors of production
and perfect competition. For expositional simplicity, we abstract from technological
progress and population growth. The capital and labor market clearing conditions
are Kt = kCt + kXt and nXt + nCT = 1. We assume that the savings rate, s ∈ (0, 1),
is constant. Given that the economy is closed, the savings rate is also the investment
share of final expenditure.7 Investment is the numeraire, and Pt is the relative price
of consumption. For the analytic results, we model climate change as a one-time
permanent increase in temperature, T . We focus on the empirically relevant case
where θ > s and D′

J(·) < 0 for J ∈ {C,X}.
Our primary goal is to show that the division of damages between consumption

and investment contains important information not captured in an aggregate damage
function. Consistent with the approach used in most climate-economy models, we
define the aggregate damage function in this setting as the weighted average of damage
to consumption and investment productivity with the weights equal to the shares of
output (e.g., Nordhaus and Boyer, 2003; Barrage, 2020):8

DAgg(T ) ≡ DX(T )
sDC(T )

1−s. (6)

To understand the effects of climate change, we take the derivative of the log of the
aggregate damage function with respect to temperature:

d lnDAgg(T )

dT
= s

d lnDX(T )

dT
+ (1− s)

d lnDC(T )

dT
. (7)

Thus, aggregate damage functions imply that the impacts of climate change on pro-
ductivity are fully captured by the weighted average of the changes in damages to
consumption and investment productivity.

To help with the underlying intuition, panel (a) of Figure 2 plots a level set of
7We treat the two production functions as capturing final expenditure on consumption and

investment. The model is unchanged if we consider value-added production functions with s equal
to the constant share of value-added devoted to investment. In our quantitative application, we
focus on value-added production functions, which makes it easier to parameterize climate damages.

8We focus on the geometric mean for analytic convenience.
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Figure 2: Heterogeneous Climate Impacts in the Analytic Model

(a) Level set of aggregate damages (b) Consumption along the level set

Note: Panel (a) shows a level set of the derivative of the aggregate damage function,
∣∣∣d lnDAgg(T )

dT

∣∣∣ =
D̄. This impact is the same at every point on the solid red line, but the split between damage
to consumption and investment productivity differs. Panel (b) plots the consumption impacts of
climate change at different points along the level set in panel (a). The solid blue line in panel (b)
shows the magnitude of the effect of climate change on short-run consumption along the level set, as
captured by equation (8). The dashed green line shows the magnitude of the effects of climate change
on long-run consumption along the level set, as captured by equation (9). The figure demonstrates
that when damages are more concentrated in investment, the impact of climate change on long-run
consumption is larger and the impact on short-run consumption is smaller.

the effect of climate change on productivity, defined by the derivative of the log of
the aggregate damage function in equation (7). At every point on the line, the effect
of climate change on the aggregate damage function is constant,

∣∣∣d lnDAgg(T )
dT

∣∣∣ = D̄,
but the effects on consumption and investment productivity differ. Standard climate
economy models assume that the consequences of climate change should be identical
for any point on the line in panel (a) of Figure 2, regardless of the split between
consumption and investment damages.

We first show that the impact of climate change on short-run consumption depends
on how climate change differentially effects consumption and investment productivity.
In other words, the impact of climate change on short-run consumption depends
on where the economy lies along the line in panel (a) of Figure 2. Following the
standard steps for structural change growth models (e.g., Herrendorf et al., 2014), it
is straightforward to show that the relative price of consumption is the inverse of the
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relative productivity between the two sectors,

Pt =

(
AXDX(T )

ACDC(T )

)1−θ

.

Also, gross domestic product is the sum of investment and consumption expenditure:

Yt ≡ Xt + PtCt = (AXDX(T ))
1−θ Kθ

t ,

where the rightmost equality follows from combining the production functions for
consumption and investment, the market clearing conditions, and the expression for
the relative price of consumption.

The exogenous savings rate implies that PtCt = (1 − s)Yt. Using this relation-
ship, as well as the expressions for GDP and the relative price of capital, yields the
equilibrium value of consumption in period t,

Ct = (1− s) (ACDC(T ))
1−θ Kθ

t .

Taking the derivative of the log of Ct with respect to temperature, T , yields the
impact of climate change on short-run consumption:

∂ lnCt

∂T
= (1− θ)

∂ lnDC(T )

∂T
. (8)

Only damages to consumption productivity affect the level of consumption in the
short run (i.e., conditional on a value of aggregate capital, Kt). Holding constant
the effects of climate change on the aggregate damage function,

∣∣∣d lnDAgg(T )
dT

∣∣∣, climate
change has a larger impact on short-run consumption when the effect of climate
change on consumption productivity,

∣∣∣∂ lnDC(T )
∂T

∣∣∣, is large (which in turn implies that

and the effect of climate change on investment productivity,
∣∣∣d lnDX(T )

dT

∣∣∣, is small). In
the context of panel (a) of Figure 2, as the economy moves from left to right along
the level set, the effect of climate change on short-run consumption falls. The solid
blue line in panel (b) in Figure 2 graphically summarizes this result. It plots the
magnitude of the effect of climate change on short-run consumption, |∂ lnCt

∂T
|, holding∣∣∣d lnDAgg(T )

dT

∣∣∣ fixed at D̄. As the economy moves from left to right along the horizontal
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axis, the effect of climate change on investment productivity rises and the effect of
climate change on consumption productivity falls. As a result, the effect of climate
change on short-run consumption decreases.

We next show that the impact of climate change on steady state consumption also
depends on how aggregate damages are split between consumption and investment
productivity. We use asterisks (∗) to denote steady state values. Following the
standard steps for the Solow model, the steady state level of capital is

K∗ = (AXDX(T ))
(s
δ

) 1
1−θ

.

Steady state capital only depends on damages to investment productivity, highlight-
ing once again the different roles that damages to consumption and investment pro-
ductivity play in the economy’s dynamic response to climate change.

To solve for steady state consumption, we combine the steady state level of capital
with the assumption of a constant savings rate and the expression for Pt,

C∗ = (1− s)
(s
δ

) θ
1−θ

(AXDX(T ))
θ (ACDC(T ))

1−θ .

Taking the derivative of the log of C∗ with respect to temperature, T , yields the
impact of climate change on long-run consumption:

∂ lnC⋆

∂T
= θ

∂ lnDX(T )

∂T
+ (1− θ)

∂ lnDC(T )

∂T
. (9)

The effect of climate change on long-run consumption depends on its effects on
both consumption and investment damage. Reductions in investment productivity
decrease the size of the economy, and reductions in consumption productivity de-
crease consumption conditional on the size of the economy. The dashed green line in
panel (b) of Figure 2 plots the magnitude of the effect of climate change on long-run
consumption, |d lnC∗

dT
|, for different points on the level set in panel (a). As the economy

moves from left to right along the horizontal axis in panel (b), the effect of climate
change on investment productivity rises and the effect on consumption productivity
falls. The figure demonstrates that the impact of climate change on steady state
consumption is larger when damages are more concentrated in investment.
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To highlight the relevant intuition, consider the effects of climate change on long-
run consumption at the horizontal intercept from panel (a) of Figure 2, where climate
change only affects investment productivity and at the vertical intercept, where cli-
mate change only affects consumption productivity. If climate change only affects
consumption productivity then

∣∣∣d lnDC(T )
dT

∣∣∣ = D̄/(1 − s) and
∣∣d lnC∗

dT

∣∣ = (
1−θ
1−s

)
D̄. In-

stead, if climate change only affects investment productivity, then
∣∣∣d lnDX(T )

dT

∣∣∣ = D̄/s

and
∣∣d lnC∗

dT

∣∣ = ( θ
s

)
D̄. Thus, as long as θ ̸= s, the effect of climate change on long-run

consumption,
∣∣d lnC∗

dT

∣∣, depends on how climate damages are split between consump-
tion and investment. In practice, θ > s, implying that, for a given change in the
aggregate damage function, climate change has bigger impacts on steady state con-
sumption when damages are concentrated in investment.

Standard climate economy models implicitly apply an aggregate damage function
to all sectors, where the aggregate damage function is a weighted average of more
disaggregated damages. In the context of our simple model, the aggregate dam-
age function is the weighted average of the damage to consumption and investment
productivity, with weights equal to the consumption and investment shares of con-
temporaneous output, as in equation (6). While convenient, these weights do not
correctly capture how damages affect consumption in either the short or the long
run. In the short run, only consumption damages affect the level of consumption.
Thus, applying the weighted average to all sectors overstates the importance of in-
vestment damages for contemporaneous consumption. In the long run, the weight of
investment damages for steady state consumption, θ, is greater than their weight in
contemporaneous output, s, because damages to investment productivity compound
over time.9 Consequently, the aggregate damage function weight of s on investment
damages understates the impact of investment productivity losses on steady state
consumption.

9To see the role of compounding, note that the elasticity of consumption to DC(T ) is 1− θ for
both contemporaneous and steady-state consumption. The impact of consumption productivity on
consumption is the same in both the short and long run, because consumption productivity has no
impact on the dynamics of the economy. Meanwhile, the elasticity of consumption with respect to
DX(T ) depends entirely on capital accumulation. This elasticity grows from 0 in the short run,
when there is no change in capital, to θ in the steady state, which is precisely the elasticity of output
with respect to capital.
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4 Full Model
Building on the intuition from Section 3, we next develop a richer model that ac-
counts for heterogeneous damages and is more amenable to quantitative analysis. In
particular, we consider a finite time horizon,10 endogenize the savings rate, and model
consumption and investment as goods that are produced from the value added of the
five underlying sectors in Figure 1. Climate change directly affects productivity in
these five sectors. The full model draws on the generalized structural transformation
framework of Herrendorf et al. (2013, 2014, 2021) and Garcia-Santana et al. (2021).
We build on their work by (i) adding climate change as a determinant of productivity
and (ii) modeling a more disaggregated economy that includes the construction and
mining sectors, both of which are particularly vulnerable to climate change.

Production. Production is perfectly competitive. There are five production sectors
with positive value added: agriculture (a), services (s), construction (b), energy and
mining (e), and manufacturing (m). We use j to index these sectors.

Each sector has a representative firm with a Cobb-Douglas production function:

yjt = kθ
jt (Dj(Tt)Ajtnjt)

1−θ , (10)

where yjt is the output from sector j at time t, njt is the quantity of labor inputs, Ajt

is the productivity of technology, and kjt is the quantity of capital used in produc-
tion. Damage function Dj(Tt) is specific to sector j. The argument, Tt, is a measure
of climate, which evolves exogenously. Damage functions take values in the interval
[0, 1], with 1 representing no damage from climate. Consistent with existing models
(e.g., Herrendorf et al., 2014), we assume that θ is the same across all sectors. Her-
rendorf et al. (2015) show that differences in θ across sectors do not have first order
consequences for structural change (see also Gollin et al., 2014). The productivity of

10Since our model has structural change in investment, it does not have a steady state (Herrendorf
et al., 2021). In our quantitative analysis, we simulate the model through 3000 and study outcomes
through 2200. The choice of the terminal year does not affect the dynamics over the period we
study.
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technology grows at a constant, exogenous, and sector-specific rate,

Ajt = (1 + γj)Ajt−1. (11)

Output from sector j, yjt, can be used to produce consumption or investment. Market
clearing for output from sector j is given by

yjt = cjt + xjt, (12)

where cjt is the quantity of sector j output that is used to produce consumption and
xjt is the quantity of sector j output that is used to produce investment.

A representative firm produces a final investment good (Xt) by combining value
added from the construction sector with value added from the other sectors according
to a nested CES production function. The production function is:

Xt =

[
ξ

1
σx
b x

σx−1
σx

bt + ξ
1
σx
z x

σx−1
σx

zt

] σx
σx−1

, (13)

where ξb + ξz = 1 and

xzt =

(∑
j ̸=b

ξ
1
σz
j x

σz−1
σz

jt

) σz
σz−1

,
∑
j ̸=b

ξj = 1, (14)

is the inner CES function.

Factor Market Clearing. There is no population growth and labor is supplied
inelastically. We normalize the size of the labor force to one:

1 =
∑
j

njt, (15)

with njt ≥ 0 ∀j, t. Aggregate capital, Kt, can be costlessly moved between sectors.
Market clearing for capital goods is given by

Kt =
∑
j

kjt, (16)
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with kjt ≥ 0 ∀j, t. Capital accumulates according to

Kt+1 = Xt + (1− δ)Kt, (17)

where δ ∈ (0, 1) is the depreciation rate.

Individuals. There is a representative household with generalized Stone-Geary pref-
erences (Herrendorf et al., 2013). Flow utility is defined over the four consumption
categories – cat, cst, cet and cmt – according to:

Ct =

(∑
j ̸=b

ω
1
σc
j (cjt + c̄j)

σc−1
σc

) σc
σc−1

,
∑
j ̸=b

ωj = 1. (18)

For each j, ωj > 0 is a time-invariant weight in the utility function, and c̄j governs the
size of income effects. The term σc > 0 is closely related (but not exactly equal) to
the elasticity of substitution between sectors. We refer to Ct as aggregate consump-
tion. Garcia-Santana et al. (2021) show that generalized Stone-Geary preferences can
recreate the stylized facts of structural change when combined with structural change
in investment, as in our framework.11

Lifetime utility of the representative household is given by

U =
tmax∑
t=0

βt C
1−χ
t

1− χ
, (19)

where β ∈ (0, 1) is the time discount factor, χ is the elasticity of intertemporal sub-
stitution, and tmax is the final period. This implies that the representative household
discounts future consumption losses from climate damage because of β, which cap-
tures the pure rate of time preference, and also χ, which governs changes in the
marginal utility of aggregate consumption. We normalize the price of the final in-
vestment good to one. The budget constraint of the representative household is given

11In models that do not separate structural change in investment, the Stone-Geary function
has insufficiently strong income effects to match patterns in the data. Recent work has developed
alternative utility functions with stronger income effects to explain economy-wide level of structural
change when there is no asymmetry between consumption and investment (Boppart, 2014; Alder
et al., 2019; Comin et al., 2021),
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by ∑
j ̸=b

pjtcjt +Xt ≤ wtLt + rtKt, (20)

where pjt is the price of value added from sector j, wt is the wage rate, and rt is the
rental rate.

Analysis. As noted above, our model adds climate damages and greater disaggre-
gation to the existing literature on structural transformation (e.g., Herrendorf et al.,
2013, 2014, 2021; Garcia-Santana et al., 2021). Conveniently, the solution techniques
from the earlier literature still apply with these new elements. Details of the analysis
are in Appendix A.

5 The Macro Consequences of Heat Stress:
A Quantitative Illustration

A key feature of our analysis is that climate damage can vary between consumption
and investment productivity. To highlight the importance of this heterogeneity, we
consider one particular type of climate damage: labor productivity losses due to heat
stress. We choose heat stress as an illustration because we can use existing estimates
from the climate science literature and because there is a natural distinction between
the vulnerability of indoor and outdoor sectors.

5.1 Calibration

The time period in the model is one year. To calibrate the damage functions, we
combine estimates of Dunne et al. (2013) with projections of future changes in tem-
perature. We estimate the parameters of the CES investment and utility functions
from historical data on sector shares and relative prices. We take the remaining
parameters of the growth model directly from the data and the existing literature.
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5.1.1 Labor Productivity Losses From Heat Stress

Our goal is to project future labor productivity losses from heat stress in each sector.
We assume that the outdoor sectors of agriculture, energy and mining, and construc-
tion are equally susceptible to the climate damage from heat stress, while the indoor
sectors of manufacturing and services are not vulnerable. Consistent with this as-
sumption, Nath (2022) estimates the impact of temperature on productivity in the
U.S. manufacturing sector and finds zero effect. While he also finds that manufac-
turing firms increase energy expenditures on very hot days, the cost of doing so is
sufficiently small that it has negligible impacts on productivity.12

Losses from heat stress depend on workplace rules and norms, as well as individ-
ual worker circumstances. Worker safety organizations, the U.S. military, and the
American College of Sports Medicine all provide guidelines for how much effort in-
dividuals can safely exert under different climate conditions (Armstrong et al., 2007;
Dunne et al., 2013).13 Dunne et al. (2013) use these guidelines to estimate the labor-
productivity losses from extreme heat. We use their estimates to calculate the climate
damage from heat stress in the outdoor sectors in our model.

Specifically, Dunne et al. (2013) estimate the fraction of a standard eight-hour
work day for which an individual can safely sustain the effort needed to engage in
“heavy work,” which is typical of agriculture and construction (e.g., ILO, 2019, p. 91).
For example, if under given temperature conditions, an individual could only safely
work for six hours, then the damage function would apply a 25 percent reduction in
labor productivity. The safety limits are taken from the U.S. military and from the
occupational safety guidelines, both of which build on physiological studies (ACGIH,
1996; Parsons, 2006; Army, 2003).14

12In practice, not all tasks in the outdoor sectors are preformed outside and not all tasks in
the indoor sectors are preformed inside. The goal of our quantitative analysis is to illustrate the
importance of distinguishing between damages to consumption and investment productivity. The
coarse distinction between indoor and outdoor sectors is sufficient to illustrate this point.

13The labor productivity loss is different than changes in the maximum effort that workers could
exert at a given temperature without assuring negative consequences. The guidelines are designed
to protect workers of varying levels of health from meaningful risk of heat stress.

14For an example of such guidelines, see the Heat Stress Work/Rest Schedule for mining industries
from the National Institute for Occupational Safety and Health (NIOSH), which is available at
https://www.cdc.gov/niosh/mining/UserFiles/works/pdfs/2017-127.pdf. According to the
guidelines, “heavy work” includes “climbing”, “Carrying equipment/supplies weighing 40 pounds or
more”, and “using hand tools (shovel, fin-hoe, scaling bar) for extended periods.”
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Dunne et al. (2013) show that the occupational safety organizations and the U.S.
military have a consistent set of heat stress guidelines, which suggest that the rela-
tionship between labor productivity and heat stress is given by:

Fraction of Labor Productivity Lost = 0.25 ·max[0, (WBGTt − 25)
2
3 ], (21)

with an upper bound of one. Here, WBGTt is the wet bulb globe temperature, which
incorporates the ambient air temperature, humidity, wind speed, and solar irradiance
to capture the climatic conditions the body actually experiences. This is the standard
measure of heat exposure used in the extensive physiology and occupational safety
literature on heat stress (e.g., Hsiang, 2010; Kjellstrom et al., 2018).

The labor-productivity losses specified in equation (21) are zero for all WBGT
below 25◦C. As the WBGT increases beyond 25◦C, the fraction of labor productivity
lost increases, until it reaches its upper bound of one at 33◦C. If the WBGT ex-
ceeds 33◦C, the guidelines suggest that it is not safe to perform any outdoor work.
These results are quite similar to the guidelines from the American College of Sports
Medicine, which suggest that some athletes should reduce physical exertion when
the WBGT exceeds 22.3◦C and that all exercise should be cancelled if the WBGT
exceeds 32.3◦C, even for “acclimatized, fit, low-risk individuals” (Armstrong et al.,
2007, Table 2).

Of course, the worker-safety guidelines for heat stress do not perfectly reflect the
labor-productivity losses from extreme heat. Some workers could reduce effort by
more than what the guidelines recommend. Others could work beyond what the
guidelines recommend, which could either increase or decrease their overall produc-
tivity, depending on the consequences of heat stress. But the consistency of the
guidelines across a wide range of organizations suggests that they provide an empiri-
cally founded, reasonable measure of how changes in wet bulb globe temperature will
affect outdoor labor productivity in the United States.

5.1.2 Heat Stress Damage Functions

To project the future consequences of heat stress for the U.S. economy, we proceed
in three steps. First, we project the daily distribution of the WBGT for each U.S.
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county for the period 2020–2100. Second, we combine these daily projections with
the specification for lost labor productivity in equation (21) to project annual county
level damages. Third, we average annual damages across counties to project national
climate damages from heat stress.

We first describe how we construct the county-level projections of the WBGT
distribution. Rasmussen et al. (2016) report county-level projections of the annual
distribution of average daily temperature through year 2100 under different represen-
tative concentration pathways (RCPs) for each climate model in the Coupled Model
Intercomparison Project (CMIP) archive.15 Additionally, the data include projections
from model surrogates that populate the right tail of the distribution of global mean
surface temperature from 2080-2100. To aggregate across individual climate models,
we follow Rasmussen et al. (2016) and Hsiang et al. (2017) and take a weighted av-
erage of the individual model projections. The weights are designed to capture the
relative probabilities that a given climate model represents the true outcome. To cal-
culate the county-level distribution of the WBGT, we combine the projected RCP 8.5
county-level temperature distributions with information on relative humidity, solar
irradiance and wind speed (see Appendix Section B.3). To calculate WBGT we as-
sume that all work occurs in the shade (i.e., we set the solar irradiance term to zero).
In this way, we implicitly capture some ways that workers can adapt to extreme heat.

We combine the county-level projections for the daily distribution of WBGT and
the function for the fraction of labor productivity lost in equation (21) to determine
the daily proportional loss in labor productivity from heat stress in outdoor sectors
for each county-year.16 To calculate annual county-level damages, we average across
daily productivity losses in each county-year. To aggregate to the national level, we
take the average of the annual county-level damages from heat stress, weighted by
2019 outdoor-sector employment in each county.17 This process generates national
annual damages to outdoor sectors through 2100, which is when the county-level
temperature projections end.

15https://www.wcrp-climate.org/wgcm-cmip.
16We found similar results when using 2019 county-level population, rather than outdoor em-

ployment, to construct weights.
17Data on outdoor employment are from the County Business Patterns survey produced by the

US Census. Outdoor-sector employment is the sum of employment in the agriculture (NAICS 11),
mining (NAICS 21) and construction (NAICS 23) sectors.
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Figure 3: Climate Change Projections
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(b) Climate Damage From Heat Stress

Note: panel (a) plots the outdoor-employment-weighted number of days per year that the WBGT
exceeds 25◦C (solid blue line), 30◦C (dashed orange line), and 33◦C (dotted yellow line). Panel (b)
plots the climate-change component of labor productivity in outdoor sectors. Subscripts a, b and e

denote the agriculture, construction and mining sectors, respectively.

This damage series has two shortcomings. First, it has short-run fluctuations
from variation in weather that are unrelated to trends in climate. Second, it cannot
account for the effects of climate change beyond 2100. To address both of these issues,
we use a second degree polynomial to capture the relationship between annual U.S.
damages to outdoor sectors and global CO2 concentrations under RCP 8.5 from 2020-
2100. The fitted relationship smooths out the short-run fluctuations. We combine
the fitted relationship with the longer available time series for projections of global
CO2 concentrations to extend our damages estimates through year 3000. Under RCP
8.5, CO2 concentrations are constant after 2250.

To provide a sense of how climate change will labor-productivity losses from heat
stress, panel (a) of Figure 3 plots the outdoor-employment weighted average of the
number of days each year that the WBGT is above 25◦C, above 30◦C and above
33◦C. As shown in equation (21), 25◦C is the threshold beyond which workers begin
to loose labor productivity from heat stress, and 33◦C is the threshold beyond which
all labor productivity is lost to heat stress. Climate change leads to large increases in
the number of days for which the WBGT is above these threshold values, increasing
the damage from heat stress. For example, the number of days above 25◦C more than

22



triples between 2020 and 2100, from 25 to 80 days.
Panel (b) of Figure 3 plots the function for the projected climate damage from

heat stress for outdoor sectors over the 2020-2200 period, equal to Dj in the model for
all outdoor sectors, namely agriculture (a), construction (b), and energy and mining
(e). A value of Dj = 1 would imply no climate damage from heat stress. This is
the value applied to the indoor sectors of manufacturing (m) and services (s). As Dj

falls below one, the climate damage from heat stress increases. The vertical intercept
implies that heat stress reduced labor productivity by 2 percent in 2020. Between
2020 and 2200, Dj falls from 0.98 to 0.63 implying that future changes in climate
increase the losses in outdoor-sector labor productivity from 2 percent to 37 percent.

We use the climate damage from heat stress as a quantitative example because we
can take measures of the labor productivity losses from the physiological literature.
An alternative approach would be to estimate the sector-level damage functions for
the US economy using cross-county variation in output per worker in each sector and
temperature. Such an approach would require data on value-added in each sector
deflated by county-sector specific prices. Unfortunately, the BEA does not collect
any local price information.18 This is a critical obstacle for directly estimating cli-
mate damages from county-level data, because prices and productivity are inversely
proportional (see equation (A.10)). Consequently, the model predicts that a climate
shock which reduces productivity in a particular sector would also raise the price in
that sector, muting the overall effect on nominal value added. The absence of local
price information implies that we cannot purge the county-level data of these price
effects, making it challenging to exploit county-level variation to estimate the effects
of higher temperatures on sector productivity.19

Our measure of the climate damage from heat stress has two important caveats.
First, the damage estimates we use are based on guidelines, not actual observations.
Second, to aggregate the county-level impacts into national damages in each sector, we
weight the damages in each county by the county’s outdoor employment. Implicitly,

18The BEA produces a nominal and real series on value-added by sector in each county. The price
index used to deflate the real series is a weighted average of the national industry level prices, where
the weights are determined by the relative composition of industries in each county. Importantly,
the BEA does not use any local information on industry prices.

19Previous studies have use cross-country variation to estimate the global losses from rising
temperatures (Dell et al., 2012; Burke et al., 2015; Casey et al., 2023). Importantly, these studies
have country-level price indices, and so do not face the same empirical challenges.
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this approach assumes that production does not shift across counties in response to
changes in relative climates. We abstract from these spatial dimensions to focus on the
dynamics of consumption and investment. In this way, our work is complementary to
a growing climate literature that carefully considers space, but abstracts from capital
accumulation (e.g., Desmet and Rossi-Hansberg, 2015; Nath, 2022; Cruz Álvarez and
Rossi-Hansberg, 2021).

5.1.3 Growth model

We estimate the utility function parameters from data on relative prices and consump-
tion value added, closely following the procedure outlined in Horowitz et al. (2006),
Herrendorf et al. (2013), and Garcia-Santana et al. (2021). All data on sector-level
prices and quantities come from the Bureau of Economics Analysis (BEA). We first
derive expressions for the sector shares of consumption value added,

pjtcjt∑
j ̸=b pj,tcj,t

=
ωjp

1−σc
j,t∑

j ̸=b ωjp
1−σc
jt

·

(
1 +

∑
j ̸=b pj,tc̄j,t∑
j ̸=b pj,tcj,t

)
− pj,tc̄j∑

j ̸=b pj,tcj,t
, (22)

j = a, e,m, s, from the model first order conditions (see Appendix Section A.1.5).
We use iterated feasible generalized nonlinear least squares to estimate the resulting
demand system from U.S. data on relative prices and consumption value added in
each sector (constructed from the BEA input-output accounts, see Appendix Section
B.1). The shares sum to unity, causing the error covariance matrix to be singular.
Therefore, we drop the sector share of agriculture when performing the estimation.
Additionally, several of our parameter values are constrained. In particular, the
substitution elasticities must be non-negative and the CES weights must sum to
unity. We transform the constrained parameters into unconstrained parameters,

σc = eq0 , ωa =
1

1 +
∑3

i=1 e
qi
, ωg =

eq1

1 +
∑3

i=1 e
qi
, (23)

ωm =
eq2

1 +
∑3

i=1 e
qi
, ωs =

eq3

1 +
∑3

i=1 e
qi
.

We estimate the demand system in terms of the unconstrained parameters, q0, q1, q2, q3,∈
(−∞,∞) and c̄a, c̄g, c̄s ∈ (−∞,∞). Using the unconstrained parameter estimates,
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we calculate the point estimates and standard errors on the constrained parameters,
σc, ωa, , ωg, ωm, ωs, using the delta method.20

Our procedure to estimate the CES investment parameters parallels our procedure
for consumption. We derive expressions for the sector shares of investment value
added,

pb,txb,t

Xt

= ξxp
1−σx
bt , (24)

pj,txj,t

Xt

= (1− ξx)ξjp
1−σj

jt

(∑
j ̸=b

ξzp
1−σz
xjt

)σz−σx
1−σz

, j ̸= b, (25)

and use iterated feasible nonlinear least squares to estimate the resulting demand sys-
tem. We again drop the sector-share of agriculture from the estimation and transform
the constrained substitution elasticities and weights into unconstrained parameters,
as in equation (23).

Table 1 reports the estimated parameter values with heteroskedasticity-robust
standard errors in parentheses. Consistent with earlier studies (e.g., Herrendorf et al.,
2013; Garcia-Santana et al., 2021), we find that the calibrated substitution elasticities
for consumption and the inner-most investment nest are close to zero. The substitu-
tion elasticity for the outer investment nest is close to one. Additionally, the signs of
the non-homothetic terms mirror the patterns from earlier work, c̄a < 0 and c̄s > 0

(Herrendorf et al., 2013).
Figures 4 and 5 plot the model and empirical sector shares of consumption and

investment value added, respectively.21 Overall, the model fits these sector shares
quite well. However, the model only matches the trend in the construction share.
It does not match the volatility. Since our model is designed to capture long-run
trends, it omits some of the mechanisms necessary to capture the business cycle
fluctuations in construction, even conditional on the time path of prices. For example,
the relationship between the price of construction and demand will be affected by the
stock of existing structures. As explained by Rognlie et al. (2018), economic booms

20The estimation approach very closely follows Herrendorf et al. (2013). We conduct the estima-
tion in Stata using the nlsur command.

21See Koh et al. (2020) for related data on the construction share of investment expenditure,
rather than value added.
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Table 1: Consumption and Investment Parameter Estimates

Panel A. Consumption
σc c̄a c̄g c̄s ωa ωg ωm ωs

0.28 -0.22 -0.40 8.27 0.004 0.005 0.08 0.91
(0.006) (0.004) (0.009) (0.137) (0.000) (0.000) (0.001) (0.001)

Panel B. Investment
σx σz ζb ζz ξa ξg ξm ξs

1.01 0.21 0.16 0.84 0.01 0.06 0.32 0.61
(·) (0.022) (0.001) (0.001) (0.001) (0.002) (0.003) (0.003)

Note: Panels A and B report the estimated parameter values for consumption and investment,
respectively. Robust standard errors are in parentheses.

often involve overbuilding of homes, followed by “investment hangovers” where the
demand for structures is satisfied by the existing homes, rather than new construction.
Furthermore, many people view structures as a financial investment, implying that
the demand for new construction depends on expectations of future asset prices, which
are not included in the model (Guerrieri and Uhlig, 2016).

The climate damage from heat stress primarily affects the economy through the
construction sector because the share of construction in investment value added is
much larger than the shares of agriculture and mining in either investment or con-
sumption value added. The elasticity of substitution between construction and the
other intermediates, σx, is important for predicting how the share of construction
value added will evolve over time, and hence how the climate damage from heat
stress will evolve. Our estimated value of σx is near unity, implying that the share of
investment value added from construction will be relatively constant over time, as it
has been historically (see Figure 5). If instead, the substitution elasticity were near
zero, as is true for the other substitution elasticities, then the low productivity growth
in construction would cause construction to eventually take over the economy. This
alternate outcome would amplify the difference in climate damage to consumption
and investment productivity and make accounting for heterogeneous damages even
more important.

We determine the sector-specific productivity growth rates from the historical
changes in the relative prices. Relative prices in the model are inversely related to
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Figure 4: Model Fit: Consumption
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Note: the four panels plot the model (solid blue line) and empirical (dashed orange line) sector
shares of consumption value added for agriculture, mining, manufacturing, and services sectors in
the U.S. economy from 1947-2019.

relative productivities inclusive of climate damage. The price in sector j relative to
the price of investment (the numeraire) is given by:

pjt =
(DX(Tt)AXt)

1−θ

(Dj(Tt)Ajt)
1−θ

. (26)

Aggregating across sectors implies that DX(Tt)AXt equals total factor productivity
(Yt/K

θ
t ) in the U.S. economy (see Appendix Section A.1.2). We calculate the time

series for DX(Tt)AXt from data on aggregate capital and output per capita, deflated
by the investment price deflator. Using the relationship in equation (26), the time
series for DX(Tt)AXt, and data on relative prices in each sector, we construct the
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historical time series for Dj(Tt)Ajt in each sector j. We use gridded weather data
on daily average temperature from Schlenker and Roberts (2009) and information on
relative humidity, solar irradiance, and wind speed to calculate the historical time
series for Dj in each sector j (see Appendix Section B.3). Dividing the time series for
Dj(Tt)Ajt by the time series for Dj(Tt) yields a time series for Ajt. For each sector j,
we set the growth rate of productivity equal to the average growth rate of Ajt in the
historical data. Construction and services have the lowest productivity growth rates,
equal to −0.4 and 1.2 percent, respectively. The negative growth rate suggests that
construction productivity is decreasing over time. This could reflect changes in reg-
ulations or increases in materials prices, among other possibilities. The productivity
growth in agriculture is the highest at 6.7 percent. Mining and manufacturing are in
the middle, with productivity growth rates of 4.4 and 3.6 percent, respectively.

We set θ equal to 0.33 to match the capital share of income, and set the inverse
of the intertemporal elasticity of substitution, χ, equal to 1.5 as in Barrage (2020)
and Nordhaus (2017). We choose β to target a real return on capital of 4 percent
(McGrattan and Prescott, 2003). The relationship between β and the return on
capital depends on the growth rates of the output per capita and the relative price
of capital. Assuming that the U.S. economy since year 2000 is well approximated
by a steady state, we use the average growth rates over this period. These values
yield β = 0.979. We use this value of β to solve the dynamic model. We compute
welfare using this market-based β and also using higher values of β to reflect a social
planner that places more weight on future outcomes. We set the depreciation rate
equal to 0.065, the average depreciation rate for fixed assets and consumer durables
(calculated from NIPA Tables 1.1. and 1.3) over the period 2000-2019.

5.1.4 Sector shares

To understand the full impact of future changes in climate, it is important to con-
sider how the sectoral composition of consumption and investment will evolve over
time. Figure 6 plots the evolution of the sector shares of consumption (panel a) and
investment (panel b) value added from 2020-2200 in the calibrated model, under the
assumption that climate remains constant at its 2019 level. Services make up the
majority of both consumption and investment. In the long run, services completely
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takes over consumption and become almost 80 percent of investment. The man-
ufacturing share of investment starts above 20 percent, but declines quickly. The
construction share of investment value added remains approximately constant at just
under 20 percent, and is relatively constant, which is consistent with the historical
trends presented in Figure 5. Together, these results imply that, in the long run,
climate damages to consumption would have to occur through services, while climate
damages to investment could occur through services or construction.

While Figure 1 shows that investment in 2019 is more vulnerable to climate dam-
age from heat stress, Figure 6 shows that this pattern will continue to hold as the
economy evolves. In the long run, construction is the only outdoor sector with a
meaningful share of value added, and construction value-added only contributes to
aggregate investment. Combining this insight with the observation that climate dam-
age from heat stress grows over time (see Figure 3) implies that essentially all of the
climate damage from heat stress in our quantitative simulations will occur in invest-
ment.

5.2 Results

We use our model to explore the quantitative implications of accounting for differential
damages to consumption and investment caused by the labor productivity losses from
heat stress in the United States.

5.2.1 Core analysis

Our model with sector-specific damages and structural change allows climate change
to differentially affect consumption and investment productivity. In contrast, many
macro climate-economy models follow DICE and assume that climate change has
equal impacts on consumption and investment productivity (e.g., Nordhaus and
Boyer, 2003; Golosov et al., 2014; Barrage, 2020; Hassler et al., 2021; Barrage and
Nordhaus, 2023). To quantify the importance of heterogeneous climate damages, we
compare the macro impacts of climate change from two different model simulations.
The first is our primary model described in Section 4. We refer to this model as
the heterogeneous-damage (HD) model. The second is a DICE-like model in which
we replace the sector-specific damage functions from our HD model with an aggre-
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gate damage function. The aggregate damage function has the same impact on every
sector, meaning that it does not alter the relative productivity of consumption and in-
vestment. Following the standard approach in the macro climate-economy literature,
we construct the aggregate damage function as a weighted average of the sector-
specific damage functions (Nordhaus and Boyer, 2003; Barrage, 2020). The weights
in each period are equal to the sector shares of GDP from a “no-climate-change”
simulation of the HD model simulation, which is discussed in greater detail below.
All other components of the DICE-like model are the same as the HD model.

To quantify the effects of climate change in the HD and DICE-like models, we
compute a “climate-change” simulation of each model. In the climate-change simula-
tion of the HD model, we feed in the sector-specific damage projections calculated in
Section 5.1.2. In the climate-change simulation of the DICE-like model, we feed in the
aggregate damage function derived from the weighted average of the sector-specific
climate damages. We compare the outcomes from each climate-change simulation
to a “no-climate-change” simulation that holds climate constant at its 2019 level.
Since the HD and DICE-like models only differ in their damage specifications, the
“no-climate-change” simulation is the same in both cases.

Panel (a) of Figure 7 plots the effect of climate change on capital in the HD model
(solid blue line) and in the DICE-like model (dashed green line). Since heat stress
has a greater impact on investment productivity, damages to investment productivity
are higher in the HD model than in the DICE-like model. As a result, allowing
for heterogeneous damage from heat stress magnifies the effect of climate change on
capital accumulation. By 2100, climate change reduces capital by 1.3 percent in the
HD model compared to only 0.3 percent in the DICE-like model. By 2200, climate
change reduces capital by 5.3 percent in the HD model, compared to only 1.2 percent
in the DICE-like model.

Allowing for heterogeneous damages also affects the decrease in consumption
caused by climate change. Panel (b) of Figure 7 plots the effect of climate change on
consumption in the HD model (solid blue line) and in the DICE-like model (dashed
green line). Comparing the blue and the green lines reveals that the DICE-like model
overstates the decrease in consumption in the near term (the green line is below the
blue line prior to 2082) and understates the fall in consumption in the long term (the
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green line is above the blue line after 2082). The intuition for this result comes from
the simple model presented in Section 3. Holding the size of the economy and the
savings rate constant, only damages to consumption productivity have an immediate
effect on the level of consumption. Damages to investment productivity slow the pro-
cess of capital accumulation and decrease consumption in the long run.22 Again, since
heat stress has a greater impact on investment productivity, damages to investment
productivity are higher in the HD model than in the DICE-like model, and damages
to consumption productivity are lower in the HD model. Thus, short-run consump-
tion losses are larger in the DICE-like model, but long-run consumption losses are
larger in the HD model.

Lastly, we show that allowing for heterogeneous damages has important impli-
cations for the welfare costs of climate change. Following Barrage (2020), we use
two measures of the consumption equivalent variation (CEV) to compare the welfare
costs of climate change between the HD and DICE-like models. The permanent-
change-in-consumption (PCC) CEV measures the percent increase in consumption a
household would need in every period in the no-climate-change economy so that it is
indifferent between living in the no-climate-change economy and the climate-change
economy. The aggregate-initial-consumption (AIC) CEV measures the level change
in year 2019 consumption that the household would need in the no-climate-change
economy so that she is indifferent between living in the no-climate-change economy
and the climate-change economy. Negative CEVs indicate that climate change makes
households worse off. The first two rows in the first panel of Table 2 report the PCC
CEV in the HD and DICE-like models and the third row reports the ratio of the
DICE-like CEV to the HD CEV. The first two rows in the second panel report the
AIC CEV in each model in billions of dollars and the third row reports the difference
between the AIC CEV in the DICE-like and HD models. Importantly, these measures
of the welfare cost only capture the climate damage from the labor-productivity losses
caused by heat stress to the U.S. economy. They do not capture the full welfare cost
of climate change, which would include all types of climate damage to all countries.

The welfare cost of climate change depends on the discount factor (β) used to
22Climate change leads to a slight increase in the savings rate, with a larger increase in the HD

model. As a result, climate change actually increases consumption for the first five years in the HD
model. This increase comes at the expense of capital accumulation and future consumption.
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weight consumption at different points in time. Since the HD and DICE-like models
have different time profiles of consumption losses, the discount factor also matters for
the relative welfare costs in the two models. The first column of Table 2 corresponds
to a case where the social planner calculates the welfare cost using the same discount
factor as market participants. Individuals place less weight on future utility, which
is captured by the fact that β < 1.23 Nordhaus (2007) argues that climate policy
should be designed using a discount factor that is consistent with market behavior.
In a recent survey, however, Drupp et al. (2018) found that many economists favor
normative frameworks that place higher weight on future outcomes, when compared to
market participants. The modal response was that policy analysis should place equal
moral weight on outcomes at all times (β = 1), a result consistent with the arguments
of Stern et al. (2006).24 The remaining columns of Table 2 report the welfare costs of
climate change calculated with higher discount factors capturing the perspective of a
social planner that places a greater moral weight on future outcomes.25

Referring to the third row of the first panel of Table 2, the ratio is less than one
for all values of β, implying that the DICE-like model underestimates the welfare cost
of climate change. Moving to the right across the columns of Table 2 shows that the
ratio falls as the β rises. The market-based level of β = 0.979 implies that the DICE-
like model understates the welfare cost of climate change by 4 percent. If instead
the social planner puts almost equal moral weight on consumption at all times, i.e.,
β = 0.995, then the DICE-like model understates the welfare cost of climate change
by 23 percent using the PCC CEV. If instead we use the AIC CEV to measure welfare,
then the third row of the second panel of Table 2 implies that the DICE-like model
understates the welfare cost of climate change by between 32 and 960 billion 2019
dollars. These results reflect the fact that the HD model predicts larger losses in
consumption in the long run. When β is larger, these losses generate higher welfare

23The parameter β captures the pure time preference. Even with β = 1, individuals discount
future reductions in consumption, because of diminishing marginal returns in the utility function.
The literature on discounting often focuses on rates of time preference, rather than discount factors.
The two are related by β = (1 + ρ)−1, where ρ is the pure rate of time preference. We focus on the
discount factor to be consistent with the macro literature.

24In our applications, we use values of β that are strictly less than one, so that the finite time
horizon does not affect the results.

25Barrage (2018) demonstrates that high social discount factors have important implications for
optimal policy. Here, we focus only on the costs of climate under a ‘business as usual’ (BAU) case.
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costs from today’s perspective.

Table 2: Welfare Costs of Climate Damage From Heat Stress in the U.S.

Discount Factor (β)
0.979 0.980 0.985 0.990 0.995

Permanent-Change-in-Consumption CEV (percent)
DICE-like model -0.151 -0.16 -0.215 -0.305 -0.458
Heterogeneous-Damage model -0.158 -0.17 -0.243 -0.369 -0.599
Ratio 0.96 0.94 0.89 0.83 0.77
Aggregate-Initial-Consumption CEV (billions of 2019 dollars)
DICE-like model -754 -833 -1340 -2333 -4415
Heterogeneous-Damage model -787 -881 -1500 -2754 -5374
Difference 32 47 159 421 960

Note: This table compares the welfare costs of the climate damage from heat stress in the HD and
DICE-like models for different values of the discount factor. The first panel reports the welfare
cost measured by the permanent-change-in-consumption CEV and the second panel reports the
welfare cost measured by the aggregate-initial-consumption CEV, where CEV is the consumption
equivalent variation.

Ultimately, the differences between the HD and DICE-like models in Figure 7
demonstrate that how damages are split between consumption and investment pro-
ductivity has important implications for the impact of climate change on the econ-
omy. Using an aggregate damage function understates the fall in capital, overstates
the short-run fall in consumption, and understates the long-run fall in consumption.
These different dynamics have important implications for the welfare consequences
of climate change. The analysis in Table 2 reveals that accounting for heterogeneous
damages meaningfully increases the welfare consequences of the climate damage from
heat stress, especially when using a normative framework that weights current and
future outcomes similarly. Additionally, the DICE-like model substantially under-
estimates the effect of changes in β on the welfare costs of heat stress, suggesting
that the discount factor could be an even more important component of the welfare
costs of climate change than has been previously realized (e.g., Dietz and Stern, 2008;
Sterner and Persson, 2008; Drupp and Hänsel, 2018).
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5.2.2 High Temperature Realization

Our core analysis focuses on the climate damage from heat stress for the mean predic-
tions for future temperature change under RCP 8.5. Many researchers have empha-
sized that there is substantial uncertainty over future climate trajectories, even given
a path of the carbon concentration (e.g., Heal and Millner, 2014). Well-designed pol-
icy must take into account the full distribution of potential outcomes. Indeed, some
scholars argue that climate policy should be thought of as an insurance policy against
the worst possible outcomes (e.g., Weitzman, 2009; Heal, 2017).

We simulate the effect of climate change in the HD and DICE-like models for
a realization of temperature from the right tail of the distribution. We take the
temperature projection from the model surrogate, scaled GFDL CM3, which is in the
95th percentile of the distribution reported in Rasmussen et al. (2016). We follow the
same procedure as before to calculate national damages for outdoor sectors with this
more extreme path of temperature realizations.

Figure 8 plots the effect of climate change on capital (panel a) and consumption
(panel b) in the HD (solid blue line) and DICE-like (dashed green line) models. As one
would expect, climate change leads to larger reductions in capital and consumption
for the tail temperature realization compared to the effects from the mean realization,
plotted in Figure 7. More interestingly, however, the tail realization of temperature
magnifies the differences between the DICE-like and HD models. For example, the
difference between the blue and green lines in 2200 reveals that the DICE-like model
under-predicts the fall in capital by over 14 percentage points under the tail realization
of temperature (panel (a) of Figure 8), compared to only 4 percentage points under
the mean realization (panel (a) of Figure 7). As a result of the larger decrease in
capital under the tail realization, consumption losses in the HD model exceed those
in the DICE-like model sooner. The switch occurs in 2039, compared to 2082 under
the mean temperature projection. The larger differences in capital and consumption
translate into larger differences in welfare (see Appendix Table 3). Under the tail
temperature realization, the DICE-like model understates the welfare cost of climate
change by between 37 and 51 percent, depending on the discount factor, as opposed
to between 4 and 23 percent in baseline analysis. Thus, if climate damage is more
severe, then the magnitude of the errors from abstracting from heterogeneous damages
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increases, causing the DICE-like model to under-predict consumption losses at closer
time horizons.

5.2.3 Comparison to other policy-relevant models

While we have focused on the DICE model, our results are applicable to the other
approaches used by the US government to calculate the social cost of carbon. As of
this writing, the Environmental Protection Agency (EPA) calculates the social cost
of carbon using three climate-economy models: DICE, FUND, and PAGE (Hope,
2006; Anthoff and Tol, 2014; IWG, 2016). In a proposed update, the EPA (EPA,
2022) plans to calculate the social cost of carbon using global damage estimates from
Resources for the Future (Rennert et al., 2022b,a), the Climate Impact Lab (2022),
and a meta-study by Howard and Sterner (2017).26 DICE assumes equal damage to
consumption and investment, which leads to very small impacts of climate change on
capital (Fankhauser and Tol, 2005). Except for the meta-study, all of the other policy
approaches used/proposed by the EPA make a more extreme assumption and assume
that climate damage only affects consumption and has zero impact on investment and
thus on capital (Hope, 2006; Anthoff and Tol, 2014; Rennert et al., 2022b,a; Climate
Impact Lab, 2022).27 Hence, the comparison in our main analysis between the HD
model and the DICE-like model with only small capital effects provides a lower bound
on the comparison between the HD model and these other approaches with no capital
effects.

6 Conclusion
We study the impact of climate change on the dynamics of consumption and in-
vestment in a model of structural change. We compare our analysis to the broader

26The damage estimates from Rennert et al. (2022a,b) and Climate Impact Lab (2022) have a large
non-market component, driven by the monetized value of premature mortality. Damage estimates
from these sources do not include impacts on construction or manufacturing sectors, both of which
contribute heavily to investment. While evidence suggests that manufacturing is not particularly
vulnerable to heat stress in the United States, it has large impacts in India and likely in other
developing countries where air conditioning is less prevalent (Somanathan et al., 2021).

27More specifically, they assume that GDP follows an exogenous path in the absence of climate
damages. Climate damages perturb output from this path within a period, but have no effect on
future levels of GDP, implying no effect on capital.
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macro climate-economy literature and policy-relevant approaches that abstract from
heterogeneous damages. We find that existing approaches will overestimate short-run
consumption losses and underestimate long-run consumption losses when investment
is more vulnerable to climate change. The opposite implications hold if instead con-
sumption is more vulnerable. We quantify these effects for the climate damage from
heat stress and find that accounting for heterogeneous damages increases the welfare
cost of climate change by 4 to 23 percent, depending on the discount factor.

While our quantitative example focuses on the labor productivity losses caused
by heat stress, the same mechanisms apply more broadly to other types of climate
damage. Since consumption and investment have different sectoral compositions, any
type of climate damage that varies across sectors will generate different damage to
consumption and investment productivity. For example, manufacturing production
may be less likely to occur along coastlines, where property values are high, making
it less susceptible to climate damage from sea level rise. Our results suggest that
understanding the heterogeneous sector-level impacts of other types of climate damage
is an important step in the process of quantifying the full dynamic consequences of
climate change.

36



Figure 5: Model Fit: Investment
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Note: the five panels plot the model (solid blue line) and empirical (dashed orange line) sector shares
of investment value added for agriculture, mining, manufacturing, services and construction sectors
in the U.S. economy from 1947-2019.
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Figure 6: Sector Shares of Consumption and Investment Value Added
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Note: Panels (a) and (b) plot the sector shares of consumption and investment value added, respec-
tively, for the model simulation without climate change.

Figure 7: Effect of Climate Change on Capital and Consumption
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Note: The panels show the effects of climate change on capital (panel a) and consumption (panel
b) in the HD (solid blue line) and DICE-like (dashed green line) models. To incorporate climate
change, we take the temperature realizations for the mean of the climate model predictions for RCP
8.5.
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Figure 8: Effects of Climate Change: High Temperature Realization
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Note: The panels show the effects of climate change on capital (panel a) and consumption (panel b)
in the HD (solid blue line) and DICE-like (dashed green line) models. To incorporate climate change,
we take the temperature realizations from the 95th percentile of the climate model predictions for
RCP 8.5.
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Online Appendix
“Understanding Climate Damages: Consumption versus Investment”

By: Gregory Casey, Stephie Fried, and Matthew Gibson

A Solution to the Full Model
We use the techniques developed in Herrendorf et al. (2013, 2014, 2021) and Garcia-
Santana et al. (2021) to solve the full model. Section A.1 describes the equilibrium.
Section A.2 derives the aggregate consumption price index and aggregate consumption
expenditure.

A.1 Description of the Equilibrium

A.1.1 Equilibrium Prices

Production factors are perfectly mobile across sectors, implying that the wage and
rental rates will be equalized. Factor prices for production sector j are

wt = pjt(1− θ)

(
kjt
njt

)θ

(Dj(Tt)Ajt)
1−θ , (A.1)

rt = pjtθ

(
kjt
njt

)θ−1

(Dj(Tt)Ajt)
1−θ , (A.2)

where wt is the wage, rt is the rental rate on capital, and pjt is the price of output
from sector j. Taking the ratio of factor prices,

wt

rt
=

1− θ

θ

kjt
njt

. (A.3)

With factor mobility, the left-hand side does not vary across sectors. By assumption,
θ is also common across sectors. This implies that the capital-labor ratio is the same
in all sectors and is therefore equal to the aggregate capital-labor ratio.

In addition, perfect competition implies that

pjt = (DjtAjt)
θ−1

(
wt

1− θ

)1−θ (rt
θ

)θ
. (A.4)
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From equations (13) and (14), profit maximization for the investment aggregator
yields

1 =
(
ξbp

1−σx
bt + ξzp

1−σx
zt

) 1
1−σx , (A.5)

where

pzt =

(∑
j ̸=b

ξzp
1−σz
xjt

) 1
1−σz

. (A.6)

Combined with equation (A.4), this yields

1 =

[(
wt

1− θ

)1−θ (rt
θ

)θ]

·

ξb (Db(Tt)Abt)
(θ−1)(1−σx) + ξz

(∑
j ̸=b

ξj

(
(Dj(Tt)Ajt)

(θ−1)(1−σz)
) 1

1−σz

)1−σx
 1

1−σx

.

(A.7)

For expositional simplicity, we define

(DX(Tt)AXt)
θ−1

≡

ξb (Db(Tt)Abt)
(θ−1)(1−σx) + ξz

(∑
j ̸=b

ξj

(
(Dj(Tt)Ajt)

(θ−1)(1−σz)
) 1

1−σz

)1−σx
 1

1−σx

,

(A.8)

which captures the overall productivity of investment after taking climate impacts into
account. There is no closed form way to separate AXt and DX(Tt). Since production
is perfectly competitive, the investment aggregator makes zero profits and

Xt =
∑
j

pjtxjt. (A.9)

Now, we take equation (A.4) for any production sector j and divide by equation
(A.7). This yields

pjt =
(DX(Tt)AXt)

1−θ

(Dj(Tt)Ajt)
1−θ

. (A.10)
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Because of the symmetry between sectors, the relative price of the good from any
sector depends only on the relative efficiency of production, which in turn depends
on technology and exposure to climate. Since the aggregate investment good is the
numeraire, the price of output from any sector is the inverse of productivity relative to
investment-specific productivity. This implies that all relative prices in the model are
independent of the household decisions. This fact greatly simplifies the computational
solution.

A.1.2 Gross Domestic Product (GDP)

GDP in this economy is given by

Yt = wt + rtKt = Xt +
∑
j ̸=b

pjtcjt =
∑
j

pjtyjt = Kθ
t (AXtDX(Tt))

1−θ . (A.11)

The first equality expresses GDP in terms of income. The second equality splits
GDP between value added in consumption and investment, and the third equality
uses equations (12) and (A.9) to express GDP in terms of value added in each of the
underlying production sectors. The final equality uses equations (15), (16), and (A.10)
to express output in terms of aggregate capital and productivity in the investment
sector. The last equality holds because we take the aggregate investment good as the
numeraire.

A.1.3 Household Problem

Using the utility function equations, (18) and (19), and the market clearing condition
for the final good, equation (A.11), the full problem of the representative household
is given by

max
{cat,cmt,cet,cst,Kt+1}Tt=0

(1− χ)−1

tmax∑
t=0

βt

(∑
j ̸=b

ω
1
σc
j (cjt + c̄j)

σc−1
σc

)σc(1−χ)
(σc−1)

(A.12)

s.t.
∑
j ̸=b

pjtcjt +Kt+1 = (1− δ + rt)Kt + wt, (A.13)

(1− δ)Kt ≤ Kt+1, (A.14)

cj,t ≥ 0, (A.15)
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where equation (A.14) reflects the non-negativity of investment (Xt ≥ 0). Existing
capital cannot be transformed into a consumption good. In the quantitative appli-
cation, the investment non-negativity constraint will only bind as t approaches tmax,
which occurs well beyond the time period on which we focus. We also find that
changing tmax has no impact on the outcomes we study. Consumption of each good is
always strictly positive in our quantitative application, and we ignore equation (A.15)
in everything that follows.

Let βtλt and βtµt be the Lagrange multipliers on the period t budget and invest-
ment non-negativity constraints, respectively. Noting the definition in equation (18),
the first order conditions can be written as

cjt (∀j, t) : C−χ
t ω

1
σc
j (cjt + c̄j)

−1
σc C

1
σc
t = λtpjt, (A.16)

Kt+1 (t < tmax) : λt − µt = βλt+1(1− δ + rt+1)− βµt+1(1− δ), (A.17)

Ktmax+1 : λtmax = µtmax , (A.18)

Xt ≥ 0 (∀t) : µt [(1− δ)Kt −Kt+1] = 0. (A.19)

In Appendix Section A.2.1, we show that combining equation (A.16) for each j yields

C−χ
t = λt

[∑
j ̸=b

ωjp
1−σc
jt

] 1
1−σc

. (A.20)

Herrendorf et al. (2014) derive this result with χ = 1. Noting that C−χ
t is the marginal

utility of aggregate consumption and λt is the (current-value) shadow value of income,
we refer to

Pt ≡

[∑
j ̸=b

ωjp
1−σc
jt

] 1
1−σc

(A.21)

as the consumption price index.
Using equations (A.17), (A.19), (A.20), and (A.21), the Euler equation is(

Ct+1

Ct

)χ

= β (1− δ + rt+1)
Pt

Pt+1

, (A.22)

for consecutive periods t and t + 1 where the investment non-negativity constraint
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does not bind. More generally, for any t < tmax,

C−χ
t P−1

t − µt = βC−χ
t+1P

−1
t+1(1− δ + rt+1)− βµt+1(1− δ). (A.23)

The non-negativity constraint will bind in the final period, yielding the terminal
condition

Ktmax+1 = (1− δ)Ktmax . (A.24)

To understand the role of the non-negativity constraint, it helps to consider the case
where the constraint only binds in the final period. In this case, the Euler equation
for the penultimate period is(

Ctmax

Ctmax−1

)χ

= βrtmax

Ptmax−1

Ptmax

.

This is similar to the unconstrained case, except that the household gets no value
from the un-depreciated portion, (1 − δ), of capital, which cannot be transformed
into consumption.

A.1.4 Aggregate Dynamics

In this section, we show how to find the dynamics of Ct and Kt+1 independently of
the sector-level allocations. Once again, the analysis closely follows Herrendorf et al.
(2014). To find the rental rate, combine equation (A.2) for any sector j with equation
(A.10), which yields

rt = θKθ−1
t (AXtDX(Tt))

1−θ . (A.25)

The Euler equation becomes

C−χ
t = β

(
1− δ + θKθ−1

t+1 (AXt+1DX(Tt+1))
1−θ
) Pt

Pt+1

C−χ
t+1, (EE)

for any two periods t and t + 1 where the non-negativity constraint does not bind,
and

C−χ
t − µt = β

(
1− δ + θKθ−1

t+1 (AXt+1DX(Tt+1))
1−θ
) Pt

Pt+1

C−χ
t+1 − βµt+1(1− δ),

(EE-Cons)

A-5



more generally.
Now, we turn to deriving a law of motion for capital. Appendix Section A.2.2

derives the following result,

∑
j ̸=b

pjtcjt = PtCt −
∑
j ̸=b

pjtc̄j. (A.26)

Herrendorf et al. (2014) derive an identical result with χ = 1. This equation ex-
presses total expenditure on consumption goods in terms of aggregate consumption
and variables exogenous to household decision-making. Using equation (A.11), the
law of motion for capital, equation (17), can now be re-written as

Kt+1 = Kθ
t (AXtDX(Tt))

1−θ︸ ︷︷ ︸
Yt

−

(
PtCt −

∑
j ̸=b

pjtc̄j

)
︸ ︷︷ ︸
Consumption Expenditure

+(1− δ)Kt. (LOM)

Combined with equation (A.24), this yields the terminal condition

PtmaxCtmax = Kθ
tmax

(AXtmaxDX(Ttmax))
1−θ +

∑
j ̸=b

pjtmax c̄j. (TC)

Recall from equation (A.10) that prices are determined by technology and can be
found independently of all other variables. In this section, we have now written the key
dynamic equations, (EE-Cons) and (LOM), and boundary conditions, K0 and (TC),
in terms of aggregate variables only. Together with the complementary slackness
condition (A.19), they can be used to find the aggregate allocations independently of
the sector-level allocations. Specifically, taking the initial capital stock and sequence
of prices and technology levels as given, the aggregate allocations are the solution to
the problem of a social planner that chooses {Ct, Kt+1}∞t=0 to maximize (19), subject to
the aggregate budget constraint (LOM) and the investment non-negativity condition
(A.14).

A.1.5 Static Allocations

It is straightforward to find the sector-level, static allocations after solving for the
sequence of prices and the aggregate dynamics. To start, we consider the quantity of
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investment goods produced. From equations (A.11) and (A.26),

Xt = (AXtDX(Tt))
1−θ Kθ

t − PtCt +
∑
j ̸=b

pjtc̄j, (A.27)

which can be taken as given when finding the sector-level allocations. From equations
(13) and (14), the first order conditions of the investment good aggregator can be
written as

xbt = ξbXtp
−σx
bt , (A.28)

xzt = ξzXtp
−σx
zt , (A.29)

xjt = ξjxztp
−σz
jt pσx

zt , j ̸= b. (A.30)

Conditional on Xt and relative prices, these equations can be solved in order, de-
termining xjt for all j. In addition, we can use these equations and (A.6) to derive
expressions for sector shares of investment expenditure, which are important for the
calibration:

pb,txb,t

Xt

= ξbp
1−σx
bt , (A.31)

pj,txj,t

Xt

= ξzξjp
1−σj

jt

(∑
j ̸=b

ξzp
1−σz
xjt

)σz−σx
1−σz

, j ̸= b. (A.32)

To find consumption allocations for each j ̸= b, we combine equation (A.16),
(A.20), and (A.21) to arrive at:

cjt = ωj

(
pjt
Pt

)−σc

Ct − c̄j, (A.33)

where cjt is the only unknown. In addition, applying equations (A.21) and (A.26),
gives the sector share of consumption as

pjtcjt∑
j ̸=b pj,tcj,t

=
ωjp

1−σc
j,t∑

j ̸=b ωjp
1−σc
jt

·

(
1 +

∑
j ̸=b pj,tc̄j,t∑
j ̸=b pj,tcj,t

)
− pj,tc̄j∑

j ̸=b pj,tcj,t
(A.34)

With the equilibrium quantities of consumption and investment, it is straightfor-
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ward to find total value added and the quantity of labor inputs in each underlying
production sector. To do so, we use the production function and market clearing
condition for each sector, equations (10) and (12):

cjt + xjt = yjt = Kθ
t (Dj(Tt)Ajt)

1−θ njt. (A.35)

The second equation also uses the fact that Kjt is both the aggregate capital-labor
ratio and the capital-labor ratio in each sector.

A.1.6 Numerical Solution

The separability of the dynamic and static allocations makes it easier to numerically
solve the model. We simulate a finite horizon economy that ends in period tmax. We
use equations (A.8), (A.10), (A.21) to derive the time paths of investment productiv-
ity, sector-level prices, and the relative price of consumption (Pt), respectively, given
time paths for the sector-specific productivity and climate damages. Conditional on
these variables, we then solve the social planner problem described in Section A.1.4
recursively to find the the dynamic time paths of Xt and Ct. Finally, we use equations
(A.28) – (A.30) and (A.33) to derive the time paths of sector-specific consumption
and investment, respectively.

A.2 Additional Derivations

A.2.1 Derivation of Consumption Price Index

Here, we derive equation (A.20). To start, use equation (18) to re-write the first order
condition for consumption of good cj,t, equation (A.16), as

C−χ
t ω

1
σc
j (cjt + c̄j)

−1
σc

[∑
j ̸=b

ω
1
σc
j (cjt + c̄j)

σc−1
σc

] 1
σc−1

= λtpjt. (A.36)

Raising everything to the power of (1− σc) yields

C
−χ(1−σc)
t ω

1−σc
σc

j (cjt + c̄j)
−(1−σc)

σc

[∑
j ̸=b

ω
1
σc
j (cjt + c̄j)

σc−1
σc

]−1

= λ1−σc
t p1−σc

jt . (A.37)
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Multiplying both sides by ωj and simplifying exponents gives

C
−χ(1−σc)
t ω

1
σc
a (cjt + c̄j)

σc−1
σc

[∑
j ̸=b

ω
1
σc
j (cjt + c̄j)

σc−1
σc

]−1

= λ1−σc
t ωjp

1−σc
jt . (A.38)

Taking the sum over all j ̸= b yields

C
−χ(1−σc)
t = λ1−σc

t

(∑
j ̸=b

ωjp
1−σc
jt

)
. (A.39)

To arrive at equation (A.20), raise everything to the power of 1/(1− σc).

A.2.2 Derivation of Aggregate Consumption Expenditure

Here, we derive equation (A.26). We again start by considering equation (A.16). Note

that C
1
σc
t =

[∑
j ̸=b ω

1
σc
j (cjt + c̄j)

σc−1
σc

]−1

Ct. Applying this result and multiplying both

sides by (cjt + c̄j) yields

C1−χ
t

[∑
j ̸=b

ω
1
σc
j (cjt + c̄j)

σc−1
σc

]−1

ω
1
σc
j (cjt + c̄j)

σc−1
σc = λtpjt (cjt + c̄j) . (A.40)

Taking the sum over all j ̸= b yields

C1−χ
t = λt

[∑
j ̸=b

pjt (cjt + c̄j)

]
. (A.41)

From equations (A.20) and (A.21), λt = P−1
t C−χ

t . Plugging in gives

PtCt =
∑
j ̸=b

pjt (cjt + c̄j) . (A.42)

To derive equation (A.26), distribute the right-hand side and bring all terms with c̄j

to the left-hand side.
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B Data and Calibration

B.1 Consumption and Investment Value Added

We closely follow the procedures outlined by the BEA (Horowitz et al., 2006), Her-
rendorf et al. (2013), and Garcia-Santana et al. (2021) to calculate sector-level con-
sumption and investment value added in the U.S. data from 1947-2019. There are
two key assumptions embedded in this approach (Horowitz et al., 2006, p.1-3). First,
the principle of proportionality says that the ratio of inputs to outputs remains con-
stant over a wide range of output levels. Second, the principle of homogeneity says
that each industry has a single production function, which holds regardless of how
the output from that sector is used.

We use z = 1, . . . , Z to denote industries and v = 1, . . . , V to denote commodities.
In addition, let iZ denote the unit column vectors of length Z and iV denote the unit
column vector of length V . Similarly, let IZ be the (Z × Z) identity and IV be the
(V ×V ) identity matrix. Superscript T denotes transpose and superscript −1 denotes
inverse.

The inputs into our calculation are the Make and Use tables from the BEA.28 The
Use table “shows the consumption of commodities by industries, as well as the com-
modity composition of gross domestic product (GDP) and the industry distribution
of value added.”29 We split this table into three components. The first is a (V × Z)
matrix U where element Uvz is the quantity of commodity v purchased by industry
z as an intermediate input. The second is a matrix of final consumption expendi-
ture on each commodity v. From this final consumption matrix, we aggregate across
categories of consumption expenditure to form the (V × 1) vector eC , which gives
the total value of commodity v that is used in consumption. It includes consump-
tion by households and government, as well as net imports. The third component of
the Use table is a matrix of final investment expenditure on each commodity v. It
includes public and private investment, as well as changes in inventories. From this
final investment matrix, we form the (V × 1) vector eX , which gives the total value

28The make and use tables are available from the BEA for three periods: 1947-
1962, 1963-1996, and 1997-2019. The data are denominated in millions of U.S. dollars.
https://www.bea.gov/industry/input-output-accounts-data

29https://www.bea.gov/help/glossary/use-table
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of commodity v that is used in investment. The (V × 1) vector e = eC + eX gives
total final expenditure on each commodity. The Make table (M) is a (Z×V ) matrix,
where element Mzv shows the production of commodity v by industry z. We use this
table directly in our calculations.

To start, we need to deal with scrap, unintentional byproducts created by con-
suming or investing industry output. After consumption or investment has taken
place, scrap can be sold as an input, but it does not count as part of gross output.
The Make table classifies scrap as a commodity. Let h be the (Z×1) vector where hz

is value of scrap created by using the output of industry z. We also define the (Z×1)
vector p, where pz is the ratio of scrap production to total production in industry
z. We define the (Z × V ) matrix M̃ as the M matrix after zeroing out the column
corresponding to scrap.

Next, we construct several helpful matrices. We start be constructing a (V × 1)
vector q, where qv is the gross production of commodity q,

q =
(
iTZM

)T
, (B.1)

and a (Z × 1) vector g, where gz is total output from industry z,

g = (MiV ) . (B.2)

Both of these vectors include scrap. It is helpful to note the following two identities:

q = UiZ + e, (B.3)

g = M̃iV + h. (B.4)

The first identity breaks up total commodity production between commodities used
as intermediate inputs (UiZ) and those devoted to final uses (e). The second identity
splits production in each industry between non-scrap (M̃iV ) and scrap (h).

Next, we create the (Z × Z) diagonal matrix ĝ, where the ĝzz = gz and then
compute the (V × Z) matrix

B = Uĝ−1, (B.5)

where B is the direct input coefficient matrix. Element Bvz is the ratio of (interme-
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diate spending on commodity v by industry z) to (total production of industry z).
We also create (V × V ) diagonal matrix q̂, where the element q̂vv = qv, and compute
the (Z × V ) matrix

D = M̃q̂−1, (B.6)

where D is the market share matrix. Element Dzv is the (total production of com-
modity v by industry z) divided by (total expenditure on commodity v). Finally, we
create (Z × Z) diagonal matrix p̂, where p̂zz = pz, and note the identity

h = p̂g. (B.7)

Our next goal is to compute the total requirements (R) matrix, which links final
expenditure on each commodity to gross production in each industry. More specifi-
cally, element Rzv shows the dollar value of industry z’s production required (directly
or indirectly) to produce one dollar of commodity v for final expenditure, accounting
for input-output linkages. Recall that gz is total production in sector g, and ev is
expenditure on commodity v for final uses. By definition, R is the (Z × Z) matrix
that solves

g = Re. (B.8)

To derive an expression for R in terms of the available data from the Make and
Use tables, we first plug equation (B.5) into equation (B.1) and note that ĝiZ = g to
get

q = Bg + e. (B.9)

Then, we plug equation (B.6) into equation (B.2) and note that q̂iV = q to get

g − h = Dq. (B.10)

From equations (B.7) and (B.10),

g = (IZ − p̂)−1 Dq. (B.11)
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Plugging in to equation (B.9) gives

q =
(
IV − B (IZ − p̂)−1 D

)−1
e, (B.12)

and substituting back into equation (B.11) gives

g = (IZ − p̂)−1 D
(
IV − B (IZ − p̂)−1 D

)−1
e. (B.13)

Thus, we have arrived at

R = (IZ − p̂)−1 D
(
IV − B (IZ − p̂)−1 D

)−1
, (B.14)

which can be computed with our data from the Make and Use tables.
Next, we move to mapping value added in each industry z to its final use, either

consumption or investment. To start, we compute a (Z × 1) vector a, where az is
total value added in industry z. Using the matrices defined above,

a = g − UT iV , (B.15)

which is simply gross output minus intermediate expenditure in each industry. Then,
we define the (Z × Z) diagonal matrix â, where âzz = az and

v̂ = âĝ−1. (B.16)

The (Z×Z) matrix v̂ is constructed such that v̂zz is the ratio of value added to gross
production in industry z. Now, we can compute the vectors of consumption value
added (aC) and investment value added (aX) as

aC = v̂ReC , (B.17)

aX = v̂ReX . (B.18)

For intuition, we focus on consumption. Vector eC gives final consumption expen-
diture for each commodity, and pre-multiplying by the total requirements matrix
R gives the total production from each industry needed to generate the consumed
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commodities. Pre-multiplying by v̂ gives the fraction of that industry-level output
that is value added, rather than expenditure on intermediates. The interpretation
is identical for the investment equation. Equations (B.17) and (B.18) assume that
input requirements and the ratio of value added to gross output is the same for both
consumption and investment, reflecting the principles of proportionality and homo-
geneity.

Finally, to map our results to the model, we collapse the (Z × 1) vectors aC and
aX into the five sectors in our model. The IO codes corresponding to each sector are:

• Agriculture: 111CA, 113FF

• Construction: 23

• Energy and mining: 211, 212, 213

• Manufacturing: 311FT, 313TT, 315AL, 321, 322, 323, 324, 325, 326, 327, 331,
332, 333, 334, 335, 3361MV, 3364OT, 337, 339

• Services: all remaining NAICS codes listed in the make and use tables.

The 2019 sector shares of consumption value added plotted in Figure 1 equal the
value added in consumption produced in each of the five sectors divided by total
consumption value added. Similarly, the sector shares of investment value added
equal the value of investment value added produced in each of the five sectors divided
by total investment value added.

B.2 Aggregate Damage Function

In our quantitative application, we compare the effects of climate change in the DICE-
like and HD models from 2019, the first period of the simulation, onward. To ensure
that the DICE-like and HD specifications generate the same damage in year 2019, we
hold the sector-specific damage functions constant at their 2019 values throughout
the simulation of the DICE-like model. Specifically, damage in each sector j of the
DICE-like model equals DAgg(Tt)×Dj(T2019). Otherwise the model is unchanged.

To construct DAgg(Tt), we follow the existing climate-economy literature and take
the weighted arithmetic average of sector-level climate impacts, where the weights are
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given by outcomes in the absence of climate change (e.g., Nordhaus and Boyer, 2003;
Barrage, 2020). In our specification, the aggregate damage function measures climate
damage that occurs after year 2019. Therefore, we must first measure sector-specific
climate damage relative to its 2019 value. Let D̂j(Tt) ≡ Dj(Tt)/Dj(T2019) denote this
normalized climate damage in sector j. The aggregate damage is then given by

DAgg(Tt)
1−θ =

∑
j

sharej,t · D̂j(Tt)
1−θ =

∑
j

sharejt ·
(

Dj(Tt)

Dj(T2019)

)1−θ

, (B.19)

where,
sharejt =

pjtyjt
Yt

∣∣∣∣
Tt=T2019 ∀t

, (B.20)

is the equilibrium expenditure share for sector j for a simulation of the model with
constant climate. We do the aggregation raising everything to the power of 1 − θ

to be consistent with the existing literature, which defines damages as factor-neutral
productivity terms. By construction, DAgg(2019) = 1 and all three simulations of
the model (constant climate, heterogenous damage, and DICE-like) have identical
outcomes in 2019, the first period of the simulation.

B.3 Wet Bulb Globe Temperature

The WBGT is an indicator that combines the effects of the ambient air temperature,
humidity, sunlight and wind speed to capture the conditions that the human body
actually experiences while preforming work outdoors. Directly measuring the WBGT
requires complex and expensive instruments, such as the one in Figure B.1, produced
by the measurement company, TSI.

The left sensor in Figure B.1 measures the globe temperature. It contains a
thermometer inside of a hollow metal sphere that is painted black. As the sphere sits
in the sun, it heats up, capturing the the effects of sunlight and radiative heat transfer
on the human body. The middle sensor measures the natural wet bulb temperature.
It is a thermometer that is fitted with wet wick. The wick is fully exposed to the
environment, and thus captures the effects of evaporative cooling on the human body.
The right sensor is a thermometer protected by a sun shield, which measures the
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Figure B.1: Wet Bulb Globe Temperature Monitor

Note: The figure shows heat stress monitor produced by the measurement company TSI (down-
loaded from https://tsi.com/products/heat-stress-monitors/tsi-quest-questemp-32-34-36-area-heat-
stress-monitors/).
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ambient air temperature. The WBGT combines these three measurements to create
an indicator of the potential for heat stress.

Standard meteorological data do not report the WBGT. Instead, we use the heat-
transfer model developed by Liljegren et al. (2008) to predict the WBGT from data
on relative humidity, solar irradiance, wind speed, and the ambient air temperature.
The model consists of a complex series of physical relationships. Liljegren et al. (2008)
originally programmed the model in FORTRAN. An R-package is also available on
Git-hub. We adapted the R code to Matlab to use for our study.

We use state-level data on average relative humidity by month from NOAA. We set
wind speed equal to 1 m/s, approximately the amount of wind the body generates by
completing physical tasks. To be conservative, we set the solar irradiance to zero and
assume instead that workers can adapt to avoid the effects of the sun by performing
outdoor work in the shade or at night.

C Additional Results

Table 3: Welfare Costs of Climate Damage From Heat Stress in the U.S.: High
Temperature Realization

Discount Factor (β)
0.979 0.980 0.985 0.990 0.995

Permanent-Change-in-Consumption CEV (percent)
DICE-like model -0.353 -0.378 -0.519 -0.755 -1.17
Heterogeneous-Damage model -0.559 -0.605 -0.891 -1.409 -2.407
Ratio 0.63 0.62 0.58 0.54 0.49
Aggregate-Initial-Consumption CEV (billions of 2019 dollars)
DICE-like model -1681 -1856 -2943 -4883 -8155
Heterogeneous-Damage model -2531 -2812 -4544 -7388 -11107
Difference 850 956 1601 2506 2952

Note: This table compares the welfare costs of the climate damage from heat stress in the HD and
DICE-like models for different values of the discount factor under the tail temperature realization.
The first panel reports the welfare cost measured by the permanent-change-in-consumption CEV
and the second panel reports the welfare cost measured by the aggregate-initial-consumption CEV,
where CEV is the consumption equivalent variation.
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