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Abstract

This paper examines how the spatial distribution of people and jobs in the United States

has been and will be impacted by climate change. Using novel county-level weather data from

1951 to 2020, we estimate the longer-run effects of climate on local population, employment,

wages, and house prices using a panel polynomial distributed lag (PDL) model. This model

and the long historical data help capture important aspects of local climate changes, such as

trends in temperature. The historical results point to long-lasting negative effects of extreme

temperatures on each of the outcomes examined. A long lag structure is necessary to appro-

priately capture the longer-run effects of climate change, as short-run effects are small. Using

county-level weather projections based on alternative greenhouse gas emissions scenarios, we

use the estimated models to project the spatial distribution of these local economic outcomes

out to 2050. Our results point to substantial reallocations of people and jobs across the country

over the next three decades, with mobility increasing by between 35 and nearly 100 percent

depending on the scenario. Population and employment are projected to shift away from the

Sunbelt and toward the North and Mountain West.
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1 Introduction

“We see nothing of these slow changes in progress, until the hand of time has marked the lapse of

ages....”

– Charles Darwin (1859), The Origin Of Species By Means Of Natural Selection.

In his groundbreaking treatise, Charles Darwin discussed the empirical challenges of studying

evolution given its glacial pace in relation to a single human lifespan. Similarly, many scholars

of today have argued that the slow pace of historical climate changes have hampered efforts at

estimating their effects, whether environmental, social, or economic. For instance, Carleton &

Greenstone (2021) recently wrote, “Because the climate has remained stable throughout modern

human history, it is difficult to isolate experimental variations in the long-run climate.” This has

led many researchers to rely on calibrated structural models (e.g., Cruz & Rossi-Hansberg (2021),

Rudik et al. (2022), and Bilal & Rossi-Hansberg (2023)) or to infer longer-run climate change effects

from estimated short-run weather effects (e.g., Dell et al. (2012), Burke et al. (2015), Deryugina &

Hsiang (2017), Colacito et al. (2019) and Rudik et al. (2022)).1

Yet the notion that there is empirically insufficient variation in climate in modern history is

becoming increasingly untrue. In the United States, for instance, long historical weather readings

reveal clear evidence of climate changes over the past several decades. Moreover, the type, magni-

tude, and even direction of climate changes have varied widely across the country. For instance, as

we document in the paper, the number of extreme heat days per year has increased substantially

since 1951 in much of the South, but it has fallen slightly in the Midwest. Over the same period, the

number of extreme cold days per year has fallen substantially in the Northeast, the Upper Midwest,

and the Mountain West regions. Precipitation patterns also have changed substantially, increasing

in the Northeast but decreasing in much of the West.2

In this paper, we take advantage of recently released detailed historical weather data across U.S.

counties to examine how the spatial distribution of people and jobs, along with wages and house

prices, has been and will be impacted by climate change.3 The new data set from the National

Oceanic and Atmospheric Administration (NOAA) contains daily county-level temperature and

precipitation measures from 1951 to the present. We use these daily data to construct annual

measures of the within-year temperature distribution for each county along with annual precipitation

variables, and we combine these with annual county data on population, employment, wages, and

house prices going as far back as 1969.

1Throughout the paper, we use the term “longer run,” as opposed to “long run,” to describe the horizon over
which we estimate historical and projected impacts of climate changes because both the changes themselves and the
impacts are likely to last longer than thirty years, which is our maximum horizon of analysis.

2These patterns are documented in Figures 1 and 2.
3Throughout the paper, we use the term “climate change” to refer to the global phenomenon of rising temperatures

and shifting weather patterns, while we refer to the local climatic manifestations of this phenomenon as “climate
changes.”
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Exploiting the substantial geographical and temporal variation in these data, we estimate the

historical short- and longer-run effects of climate change using a panel polynomial distributed lag

(PDL) model. The combination of a long time-series of local weather and the PDL model allows us

to examine how each economic outcome is impacted by local climate changes. Local climate changes

for each of several weather variables are captured by three moments: the mean over the prior 30

years, which is the standard definition used by climatologists for a climate “normal”; the trend over

the prior 30 years; and the acceleration or deceleration in the trend. Thus, our approach allows

us to focus on measures of climate change instead of relying on short-run variations in weather to

identify climate change effects, as is done in most of the literature.

We then combine these estimates with county-level weather projections out to 2050 to estimate

the impact of projected climate change on the spatial distribution of population, employment,

wages, and house prices over the next 30 years.

Using our PDL model, we estimate significant medium- and longer-run effects of weather shocks

on population growth and employment growth, as well as on wages and house prices. These results

point to mobility – both of households and jobs – as an important channel of climate change

adaptation in the United States. Importantly, we show that failing to include long lags of weather,

as in much of the prior literature, implies much smaller effects on population and employment and

the misperception that adaptation via mobility is limited. We obtain very similar results at the

commuting zone level, indicating that the effects are driven by reallocation across labor markets

rather than commuting patterns within labor markets.

Using a simple graphical analysis, we also show these relationships are present in the raw data.

Looking across counties, both mean-shifts and trend-shifts in the annual number of extreme heat

days over the prior 30 years are strongly negatively correlated with subsequent longer-run popu-

lation growth and employment growth. Our formal estimation of the effects of climate change on

local population, employment, wages, and house prices using the panel PDL model confirms and

quantifies these relationships.

The economic responses we estimate reflect different channels of local adaptation. Local ar-

eas experiencing climate changes may adapt both ex-post and ex-ante to climate change. Ex-post

adaptation is reactive, reflecting direct and indirect responses of agents to past weather shocks. For

instance, households and firms may move away from areas suffering from drought as a result of

numerous prior years of high temperatures and low precipitation. Ex-ante adaptation is proactive,

reflecting responses of agents that, looking forward, anticipate future changes in the probability dis-

tribution of weather and adapt now in advance of those expected changes. In either case, adaptation

can occur through a variety of channels. For instance, local firms and governments may invest in

more resilient infrastructure, and households and businesses may accumulate precautionary savings

to smooth out the impact of unforeseen extreme weather events. Some households and firms may

simply move away from places where the climate is expected to worsen toward places where it is

expected to improve (or worsen less). We show that our empirical model we can account for both
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ex-post and ex-ante adaptation to the extent that agents have adaptive expectations.

To help interpret our results, we present a simple spatial equilibrium model that illustrates the

role of amenities and productivity in determining how local climate changes can impact economic

outcomes. It also highlights the important role of the elasticity of housing supply in amplifying the

responses of house prices, which dampens (without eliminating) the migration response. That is,

the supply of housing in places with comparatively better climates for living only partially adjusts

over the longer-run in response to increased demand, putting upward pressures on house prices,

which tends to moderate migration to those areas. The model thus ascribes the population outflow

from regions hit by adverse climate changes to some combination of reduced amenities and reduced

productivity, which also lowers wages and employment. Guided by the model, we estimate that

the impacts of climate change on amenities and productivity are both quantitatively important

channels underlying our empirical findings.

Combining the estimated panel PDL model with projections of local climate changes, we project

substantial reallocations of people and jobs across the country over the next three decades. Hotter

counties in the Sunbelt are predicted to lose both population and employment relative to the North

and the Mountain West.

These results are a priori surprising given evidence of past migration toward warmer climates

in the United States (Rappaport (2007), Partridge (2010)). However, we first show that our projec-

tions would actually represent a continuation and acceleration of a pattern since at least the 1980s,

whereby the cross-county correlation between population growth and hot climates has turned from

strongly positive to slightly negative. Conversely, the cross-county correlation between population

growth and historically cold climates has turned from strongly negative to zero, and it is projected

to become strongly positive. Going forward, these projections point to an increasingly negative

correlation between counties with relatively hot climates and population growth. A natural inter-

pretation is that, as the relatively hotter places in the U.S. experience more extreme heat days (and

higher temperatures on those days) and the relatively colder places experience fewer extreme cold

days (and higher temperatures on those days), households are shifting from relatively attractive to

relatively unattractive places in which to live and work.4 This result holds even if one excludes

large Sunbelt cities, which have experienced both substantial increases in annual extreme heat days

and rapid, but slowing, population growth over the past 70 years.

In terms of aggregate magnitude, we estimate that climate changes will increase population

reallocation over 2021–2050 by 35, 75, or roughly 100 percent, depending on the climate change

scenario.5 We estimate similar impacts of climate changes on the aggregate amount of employment

reallocation, between roughly 30 and 100 percent, depending on the scenario. In contrast, we also

4This interpretation is consistent with evidence that extreme heat reduces subjective well-being (Baylis et al.
(2018)) and increases suicide rates (Gammans (2020)).

5We measure population reallocation by the mean absolute deviation (MAD) between county population growth
and national population growth, where growth is measured as the 30-year change in log population from 2021 to
2050.
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show that relying on a static empirical model that abstracts from long lags of weather would vastly

underpredict the degree of economic mobility.

Our results provide direct empirical evidence for mobility – both of households and jobs – as an

important channel of climate change adaptation in the United States. This suggests mobility likely

will be an important factor determining the impact and welfare costs of climate change in the decades

ahead, as argued, for instance, by the U.S. Environmental Protection Agency (2017), Carleton &

Hsiang (2016), Desmet & Rossi-Hansberg (2015), and Partridge et al. (2017). Importantly, we find

that the longer-run effects of weather on local population growth has been stable over the past

four decades, suggesting that despite the decline in U.S. mobility rates (see, for instance, Jia et al.

(2023)), mobility responses to climate changes have not declined.

In extensions to our baseline analysis, we also allow marginal weather effects in our PDL model to

be heterogeneous across counties, varying with counties’ historical climates (historical mean of each

weather variable), incomes (historical mean of income per capita), and climate change beliefs (using

the Yale Climate Survey). First, we find that the longer-run negative effects of weather variables

(extreme temperature days and precipitation) are driven by poorer counties. These variables have a

positive longer-run effect, if anything, in richer counties, consistent with relatively greater adaptive

investments in richer counties. Second, we find that the longer-run negative effects of extreme

temperatures and extreme precipitation are worse for places unaccustomed to them, consistent with

adaptation to historical climates. Third, we find suggestive evidence that the negative economic

effects of climate changes are largest in places with more skeptical attitudes toward climate change.6

It is also important to acknowledge that our paper focuses only on climate changes related

to local temperature and precipitation. Local temperature and precipitation are the proximate

causes of many important weather-related events such as floods, droughts, wildfires, heat waves,

and cold spells and hence longer-run changes in local temperature and precipitation will largely

capture changes in these climate risks. However, there are other potentially important place-varying

aspects of climate change, such as sea-level rise, that are driven by global rather than local changes

in climate. That said, the same methodology used in this paper could be used in future research

to study the effects of factors like sea-level rise on economic geography given sufficient historical,

spatially disaggregated data.

2 Contributions Relative to Prior Literature

Our use of long-lagged distributed lag models offer potentially important advantages over prior

approaches. These prior approaches generally fall into three strands. One strand seeks to identify the

effect of climate changes on economic outcomes using purely cross-sectional, geographic variation in

6This result could also reflect adaptation: places where residents believe in climate change are more likely to have
made adaptive investments (personally or via their local governments) compared with residents of climate-change-
denying places.
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climate “normals,” which are simply long historical averages of observed weather (see, for example,

Mendelsohn et al. (1994), Schlenker et al. (2005), and Nordhaus (2006)). A natural concern with

this approach is the likely correlation across geographies between climate normals and unobserved

local characteristics (fixed effects) that also affect economic outcomes. Auffhammer et al. (2013)

provide a survey of that literature and contrast it with a second strand, which uses higher frequency

(e.g., daily, monthly, yearly) panel variation and typically includes geographic fixed effects.7 They

note that “[t]he econometrician’s choice of a weather versus a climate measure as an explanatory

variable critically affects the interpretation of the estimated coefficients in the econometric model:

that is, whether the outcome is a true climate response or a short-run weather elasticity.”

A number of recent studies in the second strand, relying on higher frequency panel variation,

have put forth an envelope theorem argument to infer long-run responses to climate changes based

on estimated short-run weather elasticities (see, for example, Deryugina & Hsiang (2017) and Rudik

et al. (2022)). As stated by Rudik et al. (2022): “The envelope theorem implies that for an optimized

variable, variation in weather is isomorphic to variation in climate” (italics added). The obvious

appeal of this approach is that it does not require long historical within-place data on weather to

capture climate changes. Rather, it only requires within-place data on weather fluctuations.

However, the envelope theorem approach requires strong assumptions. Clearly, it would not

apply to outcomes that households or firms do not optimize. However, even under complete opti-

mization, Lemoine (2021) demonstrates that the the envelope theorem approach requires the opti-

mization problem to be static.8 In contrast, by exploiting the observed long histories of weather,

our approach does not rely on these strong assumptions associated with the envelope theorem.

A third strand of the literature was pioneered by Burke & Emerick (2016) who, like Deschênes &

Greenstone (2007) and Lemoine (2021), argue that short-run weather effects likely differ from longer-

run effects because of the types of adaptation behavior mentioned above. They proposed estimating

a cross-sectional regression using long-differences – i.e., changes in weather and economic outcomes

7Prominent examples of this approach include Deschênes & Greenstone (2007), Dell et al. (2012), and Colacito
et al. (2019), which estimate the impact of temperature or other weather “shocks” on economic outcomes over the
short run. Some papers in this literature extrapolate from short-run effects to project very long-run impacts from
projected climate changes (e.g., Burke et al. (2015)). Yet, as Deschênes & Greenstone (2007) point out, a “primary
limitation to this approach is that farmers [agents] cannot implement the full range of adaptations in response to
a single year’s weather realization. Consequently, its estimates may overstate the damage associated with climate
changes or, put another way, be downward-biased.” In other words, adjustment costs can cause short-run responses
to weather shocks to differ from longer-run responses.

8Consider two examples. First, consider a farmer experiencing an abnormally dry year. Their optimal response
to that precipitation shock may depend on prior years’ precipitation shocks. If precipitation was high in prior years,
the farmer can draw from local groundwater and reservoir reserves to irrigate as usual. However, if precipitation was
low in prior years, local water reserves could be depleted, forcing the farmer to adapt by changing irrigation practices
or crops. As a second example, consider the residential location decision of a household, which underpins the spatial
distribution of population. Local wildfire risk depends heavily on the precipitation and temperatures in past years.
Like water reserves, wildfire risk (or its inverse) can be thought of as a history-dependent resource stock. In both
examples, a hot and dry year imposes a cost that carries over to future years because of its effect on a resource stock.
More generally, many types of weather shocks can affect public and private capital stocks and hence affect future
behavior of households and firms.
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over long periods of time. The long-differencing removes geographic fixed effects, as would first

(year-over-year) differencing or mean-differencing (the conventional fixed effects estimator). The

long-difference estimator has an intuitive appeal in that it places greater weight on low-frequency

variation compared with first- or mean-differencing. However, as demonstrated in Lemoine (2021)

and further highlighted in Section 3 below, it still omits the effects of both long-lagged weather

shocks (ex-post adaptation) and expectations of future weather (ex-ante adaptation).

We argue that our approach, using a long-lagged PDL model, combines the advantageous fea-

tures of the first two strands, exploiting variation in climate (as opposed to weather) and including

fixed effects (made possible by sufficiently long historical data).

Ours is not the first paper to employ a distributed lag (DL) model to study environmental or

climate issues. In their cross-country study of the impact of annual temperature fluctuations on

GDP growth, Dell et al. (2012) include results from a DL model with up to 10 lags. They find

negative contemporaneous effects of average annual temperature for poorer countries, though not

for high-income countries, and they uncover little evidence of lagged effects. By contrast, across

U.S. counties, we find substantial longer-run weather effects on economic activity that often differ

in magnitude and direction from the contemporaneous effects. Hsiang & Jina (2014) also use a DL

model, with 20 years of lags, in their study of the longer-run effects of cyclones. They find negative

effects of cyclones on national income per capita that are modest in the short-run but large in the

longer-run. In concurrent work, Bilal & Rossi-Hansberg (2023) also use a panel DL model in their

study of spatial climate change effects in the U.S. since 2000. Their empirical analysis differs from

ours in a number of ways. Most importantly, they analyze the impacts of discrete, extreme weather

events whereas we examine the effects of shifts in the yearly distribution of daily temperature and

precipitation. These shifts, such as gradual increases in the number of very hot days in a year,

not only increase the likelihood of extreme weather events, but also impact local areas’ amenities,

productivity levels, and other fundamentals even absent changes in extreme events.9 Kahn et al.

(2021) and Mohaddes et al. (2022) use panel DL models to estimate the dynamic effects of average

annual temperature and precipitation on economic growth over recent decades. Kahn et al. (2021)

use country-level panel data, while Mohaddes et al. (2022) use data on U.S. states with a relatively

small number of lags. In addition to a county-level analysis and a focus on different outcome

variables, our work complements this literature by combining longer time-series data on weather

with a PDL model, which allows us to capture standard measures of climate change more closely.

Moreover, while prior studies have sought to estimate the effects of weather or climate on

aggregate economic activity, our focus is on the spatial distribution of economic activity. As such,

the previous literature generally utilized geographic variation not because of an inherent interest in

the effect of weather/climate on the spatial distribution of economic activity but rather to increase

statistical power and examine heterogeneous effects.10

9In addition, their empirical estimates are for shorter horizons – up to 10 years – than the 30-year horizons we
focus on in this paper.

10Exceptions include the recent spatial equilibrium studies of Cruz & Rossi-Hansberg (2021), Rudik et al. (2022),
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Our focus, by contrast, is precisely on identifying the longer-run effects of climate changes on

the spatial distribution of economic activity. Indeed, by including time fixed effects in our model,

we “sweep out” any aggregate effects of climate changes, thus isolating local relative effects. For

example, our historical panel model estimates identify how much local population growth changes –

relative to the average county – over time in response to an increase in the number of very hot days

– relative to the average county. Combining this estimated model with projected future localized

climate changes yields a projection of how population and other economic outcomes will shift, or

reallocate, across counties. Extrapolating from these local relative effects to aggregate national or

global effects would require alternative and much stronger identifying assumptions.11

3 Empirical Methodology

In this section, we describe our empirical methodology. In subsequent sections, we discuss the

data, present the historical results, and then estimate projected effects of climate change on the

geography of economic activity over the next three decades.

3.1 Panel Distributed Lag Model

Our baseline empirical model is a panel polynomial distributed lag (PDL) model, which is a

nested/restricted version of the standard panel distributed lag (DL) model. Hence, to understand

the features of the panel PDL model, it is helpful to consider first the panel DL model. That model,

relating local outcome growth to current and past weather, is as follows:

∆yit =
L∑

ℓ=0

βℓwi,t−ℓ + αi + αt + εit (1)

where yit represents the log of some economic outcome (such as employment, population, wages, or

house prices) in county i and year t . Hence, ∆yit measures the growth rate of the outcome in year

t . wi,t−ℓ is a vector of local weather variables in year t− ℓ. In our empirical analysis, we set L = 29

such that the model includes 30 years of weather data.

and Bilal & Rossi-Hansberg (2023) and the small set of studies examining internal migration responses to specific
shocks induced by climate change. For instance, Feng et al. (2012) examined the relationship between climate
change-induced reductions in crop yields and out-migration in rural U.S. counties. Other studies, such as Bohra-
Mishra et al. (2014), Marchiori et al. (2012), and Gray & Mueller (2012), have focused on internal migration within
developing countries, finding mixed results. As noted in Carleton & Hsiang (2016), “the wide-ranging climatic effects
on migration are not well understood and remain an area of active investigation.”

11Estimates of climate changes’ effects on the spatial distribution of economic activity could be augmented with
estimates of aggregate effects to obtain absolute, rather than relative, local economic effects. Absolute local effects
could then be incorporated into the so-called damage functions used in Integrated Assessment Models (IAMs), which
seek to quantify the full economic consequences of climate changes. Auffhammer (2018), Carleton & Greenstone
(2021) and Tol (2020) argue strongly for the need for updated research on damage functions to better inform IAMs
and policy parameters that rely on them, such as the U.S. government’s “social cost of carbon.”
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As discussed in Dell et al. (2012), this specification allows weather to affect both the level and

growth of y. βL represents the longer-run growth effect of a weather shock at time 0. The longer-run

level effect is given by the sum of the current and lagged coefficients on each weather variable out

to L:

ΩL ≡
L∑

ℓ=0

βℓ. (2)

More generally, Ωh ≡
∑h

ℓ=0 βℓ represents the impulse response function (IRF) of y with respect

to a weather shock, dw, at time 0 (Baek & Lee (2021)).

Equation (1) generalizes empirical models previously used to study the economic effects of

weather and/or climate change. As discussed above, many prior studies estimated static or short-

run autoregressive models, relying on the envelope theorem to infer climate change effects from the

estimated contemporaneous weather effects. Other recent studies, most notably Burke & Emerick

(2016) and Dell et al. (2012), used a long-difference approach. For example, Burke & Emerick

(2016) regressed the 20-year change in a local economic outcome on the 20-year changes in local

weather variables using county panel data. As demonstrated in Lemoine (2021), long-differencing

is an alternative data transformation to mean-differencing (the standard fixed effects estimator) or

first-differencing for removing fixed effects, but it still relies on the same underlying variation in

transient weather. In other words, it is an alternative estimator of the purely static model and thus

will not capture delayed or longer-run weather effects.

The impulse response function captures both short- and longer-run effects of weather on eco-

nomic outcomes. Longer-run effects have been referred to as “ex-post adaptation” effects (Lemoine

(2021)) because they may reflect delayed adaptation to weather changes that already have occurred.

In addition, given intertemporal linkages due to capital or other resource stocks, the behavior of

forward-looking agents will depend not only on current and past weather, but also on expectations

of future weather. In particular, agents may make adaptive investments today in anticipation of

future climate changes, what Lemoine (2021) calls “ex-ante adaptation.”

Our empirical model accounts not just for ex-post adaptation, but also for ex-ante adaptation

to the extent that it is driven by past weather observations, as is likely the case. In particular,

suppose that our outcomes of interest depend on both past weather, due to ex-post adaptation, and

expectations of future weather, due to ex-ante adaptation:

∆yit =
L∑

ℓ=0

βℓwi,t−ℓ +
k∑

h=1

δhw
e,t+h
i,t + αi + αt + εit. (3)

As we show formally in Appendix A, if agents have standard adaptive expectations, the expec-

tations terms in equation 3 become linear functions of past weather and the equation collapses to

the standard panel DL model:

9



∆yit =
L∑

ℓ=0

β̃i,ℓwi,t−ℓ + α̃i + αt + εit. (4)

Though the coefficients now have a different interpretation, this equation contains exactly the

same regressors as in equation (1), which reflects two important implications of adaptive expecta-

tions. First, any time-invariant component of local expectations will already be captured by county

fixed effects (α̃i). Second, our baseline specification with its inclusion of past weather observations

already captures the effects of adaptive expectations to the extent that the weights/coefficients on

past weather are homogeneous across counties. Indeed, if agents form expectations in the same

way across different counties, the coefficients on wi,t−ℓ will fully capture the effects of adaptive

expectations. To the extent that agents’ expectations processes are heterogeneous, one can allow

these coefficients to vary and model that heterogeneity explicitly. For example, in an extension

of our baseline results when we allow the impacts of past weather to vary depending on counties’

mean climate, the estimated heterogeneous impacts will capture any heterogeneity stemming from

counties’ expectations processes varying with climate.12

Of course, agents may form expectations of future weather using non-adaptive expectations.

However, these expectations would need to differ substantially from those implied by adaptive

expectations for our baseline specification to be misspecified in an economically meaningful way.

Suppose, for instance, that agents ignore weather trends to date and only look to expert projections

such as those portrayed in Figures 1 and 2 to forecast future weather. The fact that such projections,

at least out to 2050, are highly correlated with recent historical trends across counties implies that

the baseline DL model will still largely capture the role of expectations.

3.1.1 Polynomial distributed lag (PDL) model

We impose a polynomial structure on the distributed lag model in equation ( 1). Specifically, for

our preferred specification, we impose a second-order polynomial structure on the coefficients on the

weather lags, while freely estimating the coefficients on contemporaneous weather. The estimating

equation becomes:

12A closely related process of expectations formation is least squares learning (LSL). Under LSL, the parameters
in equation (A) would be allowed to vary over time. For instance, if new weather trends emerge over time due
to climate changes, agents may increase the weights on more recent weather observations. Similar to allowing for
heterogeneity in weights due to county characteristics, one can also allow for LSL expectations by allowing the βℓ’s
in the DL specification to vary over time. Indeed, we do exactly this in Section 5.6 by interacting current and lagged
weather with a linear time trend. We find little if any evidence for time-varying marginal weather effects.
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∆yit = β0wi,t +
2∑

p=0

L∑
ℓ=1

ϕpℓ
pwi,t−ℓ + αi + αt + εit

= β0wi,t + ϕ̃0w̄i,t + ϕ1

L∑
ℓ=1

ℓwi,t−ℓ + ϕ2

L∑
ℓ=1

ℓ2wi,t−ℓ + αi + αt + εit,

(5)

where ϕ̃0 = Lϕ0.
13 The implied IRF coefficients characterizing the response of the level (in logs) of

the outcome variable, y, to a weather shock becomes:

Ωh = β0 + ϕ̃0 + ϕ1

L∑
ℓ=1

ℓ+ ϕ2

L∑
ℓ=1

ℓ2. (6)

Note that, because equation (5) models the response of the change in log outcomes to weather as a

second-order polynomial, the resulting IRF for the log level, Ωh, is a third-order polynomial.

This polynomial distribution lag (PDL) specification provides two advantages relative to the

unrestricted model. First, the unrestricted model entails estimating a large number of parameters,

potentially leading to imprecise estimates of the IRF coefficients. Imposing a polynomial structure

allows for increased efficiency.

Second, and more importantly, the PDL model, given a sufficiently long lag length, provides a

direct link from standard measures of climate change to the economic outcomes of interest. For

each weather variable, the regressor in the first term (when p = 0) of the PDL, w̄i,t, is the county’s

(unweighted) average level of that weather variable over the prior 29 years – in other words, a 29-

year trailing average. This is approximately equal to the standard measure of a climate “normal”

used by climatologists, which is a 30-year average. The regressor in the second term (when p = 1),∑L
ℓ=1 ℓwi,t−ℓ, is a weighted average of the weather variables over the prior 29 years, where the

weights increase linearly with each lag. Hence, this term (times -1) measures the county’s linear

trend in that weather variable over the prior 29 years. The third term is also a weighted average,

but weighting by the square of each lag. Hence, the term captures whether the county’s trend in

the weather variable has accelerated or decelerated over the prior 29 years.

Thus, by combining our long time-series of local weather with the PDL model, our impulse

responses directly capture the impact of local climate changes on our economic variables of interest

through changes in mean weather, its trend, and nonlinearity in this trend.

13This PDL empirical model is conceptually similar to the approach taken by Bento et al. (2017) in their study of
the impact of local climate changes on air quality, which involved regressing local ozone levels on contemporaneous
temperature and a 30-year trailing average of past temperatures. The latter term is equivalent to the first (p = 0) of
the three terms in our second-order polynomial.
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3.2 Econometric Concerns

The properties of the DL model and its associated IRFs have been studied recently by Baek & Lee

(2021) and Plagborg-Møller & Wolf (2021), who demonstrate that the DL model yields consistent

estimates of the true IRF provided that the model includes a sufficient number of lags relative to

the horizon of interest. As a result, our long lag structure should yield consistent estimates.

Nonetheless, there are at least two issues that arise with the long-lagged panel DL model,

equation (1). First, one a priori concern could be that temperature (and possibly precipitation) is

trending over time and this trend could introduce nonstationarity in the residuals. For this reason,

in their study of the longer-run effect of weather at the U.S. state level, Mohaddes et al. (2022),

whose model does not include time fixed effects (or time trends), detrend their weather variables

by subtracting a 30-year moving average. In our case, this is unnecessary because the time fixed

effects absorb any aggregate weather trends. In addition, our dependent variables are log changes

and hence should generally be I(0).

The second issue relates to inference. The error term, εit, in the DL/PDL models above is poten-

tially serially correlated and likely to be spatially correlated due to the natural spatial correlation

of weather. We therefore cluster standard errors by county to account for serial correlation, and by

state-year to allow for cross-county correlation within states.

A separate, more general concern with cross-sectional or panel regressions estimating the impact

of local shocks on population changes has to do with the role of shocks in alternative locations. Cen-

tral to both individual location choice and spatial equilibrium models is the notion that individuals

choose where to live based on comparisons across locations (as well as migration costs) and so what

matters is relative, not absolute, shocks to locations’ qualities. Borusyak et al. (2022), following on

the spatial lag literature, show that omitting the shocks of alternative locations can cause estimated

effects of local shocks on population change to be biased toward zero. They propose a methodology

that exploits pre-shock migration patterns to account for shocks in alternative locations. In our

setting, given climate changes have been occurring for several decades already, it is infeasible to

identify pre-shock migration patterns. However, we address this concern is two ways. First, we show

that our results are robust to including region-by-year fixed effects, which will control for weather

shocks in a county’s region, thus accounting for the possibility that other counties within the region

are more relevant alternatives than counties outside of the region. Second, because other counties

within a commuting zone are likely to be more relevant alternatives than are counties outside of the

commuting zone, we repeat our analysis at the commuting-zone level. We obtain similar results.
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4 Data & Stylized Facts

4.1 Economic Outcomes

We use historical county panel data on population, employment, and wages over the past 50

years. Annual county population estimates from 1969 to 2020 were obtained from the Census Bu-

reau. For an extension, we also use data on county population by age from 1970 to 2020 from the

National Cancer Institute’s SEER program (https://seer.cancer.gov/popdata/download.html

). From those data we construct population for working-age (20 to 64) and retiree (65+) categories.

Annual employment for total industry and for major sectors from 1974 to 2019 were obtained from

the Census Bureau, based on the County Business Patterns data, and from Eckert et al. (2021)

( http://www.fpeckert.me/cbp/). Data on annual nominal wage and salary income by county

from 1969 to 2020 were obtained from the Bureau of Economic Analysis (BEA) Regional Eco-

nomic Accounts database ( https://apps.bea.gov/regional/downloadzip.cfm). We measure

real wages as annual nominal wage and salary income, deflated by the Bureau of Labor Statistics

(BLS) consumer price index, divided by annual total employment.

For annual house prices by county, we used the Federal Housing Finance Agency (FHFA) home

price index, which is constructed from same-property repeat sales transactions. The data cover 1976

to 2020.14 One disadvantage of the house price data is that they are unavailable for less populous

counties, so data are available for only roughly 2,400 of the nation’s 3,140 counties.

4.2 Historical Weather

We make use of a novel new data set, the NOAA Climate Divisional Database (NClimDiv).

Produced by NOAA’s National Center for Environmental Information (NCEI), NClimDiv contains

long historical weather data at various levels of spatial aggregation. Spatial aggregates are calculated

from area averages of 5 km gridded estimates based on daily readings from the Global Historical

Climatological Network (GHCN) of weather stations (Vose et al. (2014)). As of November 2018,

NClimDiv has provided county-level area averages of daily temperatures – maximum, minimum,

and average – and precipitation from January 1, 1951 to present.

From these daily records, we construct the following six yearly weather variables from 1951 to

2020:

1. Number of days in the year in which the daily average temperature was below 20◦F (≈ −6.7◦C)

2. Number of days in the year in which the daily average temperature was between 20 and 50◦F

(−6.7-10◦C)

14For a small number of counties, the FHFA index is missing for some counties while an analogous index from
CoreLogic is available. We use the CoreLogic index in those cases.
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3. Number of days in the year in which the daily average temperature was between 70 and 80◦F

(21.1-26.7◦C)

4. Number of days in the year in which the daily average temperature was above 80◦F (26.7◦C)

5. Average daily precipitation (mm)

6. Number of days with extreme precipitation (defined as daily precipitation above its 99th

percentile across all county-day observations from 1951-2020)

The use of such temperature bins, rather than annual averages, allows for potentially nonlinear

effects and follows several prior studies such as Deschênes & Greenstone (2011), Burke et al. (2015),

and Deryugina & Hsiang (2017). We use daily average temperatures to form our temperature

bin variables. Note that the daily average is generally around 10 ◦F below the daily maximum.

Hence, days with a daily average temperature above 80◦F (26.7◦C) are similar to days with a daily

maximum temperature above 90◦F (32.2◦C).

To give a sense of how these bins relate to the full temperature distribution, panel A of Appendix

Figure A1 shows the percentage of days from January 1, 1951 to December 31, 2020 for which the

daily average temperature fell within each 5-degree (Fahrenheit) bin, averaged over all U.S. counties.

Vertical red lines are shown at 20, 50, 70 and 80 degrees, which are the cut-points we use to construct

the temperature frequency bins. The cut-points of 20 and 80 are close to the 5th and 95th percentiles

of the distribution. The cut-point of 50 is around the 40th percentile, while the cut-point of 70 is

around the 75th percentile.

4.3 Weather Projections

In Section 6, we provide results using projections of county-level weather constructed in Hsiang

et al. (2017) and Rasmussen et al. (2016). These are projections of the distribution of daily average

temperature and daily precipitation across days of the year, for each year from 1981 to 2100 and

for every county in the contiguous United States. These county-level series are spatially downscaled

projections based on alternative global greenhouse gas concentration scenarios, known as Represen-

tative Concentration Pathways (RCPs), from the U.N. Intergovernmental Panel on Climate Change

(IPCC) Fifth Assessment Report (AR5). Our baseline results use the county weather projections

corresponding to the RCP 4.5 scenario. This scenario is based on a continuation of current global

climate policies and projects a global temperature increase of 2.5 to 3.0◦F (1.4 to 1.7◦C) by 2100.

We also produce results using the RCP 8.5 scenario, which is frequently described as a worse-case

scenario. While the RCP 8.5 weather projections exhibit larger trends in temperature rise for the

United States as a whole, the cross-county correlation between RCP 4.5 and RCP 8.5 is close to one.

Thus, the county-level projections of economic outcomes from the RCP 4.5 and RCP 8.5 scenarios

are extremely similar except that the latter have a larger range.
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Figures 1 and 2 show the historical and the projected yearly trends in each of the weather

variables used in our empirical analysis. These maps reveal a number of clear patterns. First, the

southern regions generally have seen an increase in the number of extreme heat days – defined as

days with an average temperature above 80◦F (26.7◦C) over the past 70 years, while the Midwest has

seen a slight reduction (see panel (a) of Figure 1). Going forward, nearly all counties are projected

to see more extreme heat days, though the largest increases are expected in the southeastern quarter

of the country (see panel (b)). Second, northern and western parts of the country have seen more

moderately hot days – with an average temperature between 70 and 80◦F (21.1 and 26.7◦C) – over

past decades (see panel (c)), and this trend is expected to continue over at least the next three

decades (see panel (d)). By contrast, southern regions have seen and are expected to continue

seeing fewer moderately hot days, which are being increasingly replaced by extremely hot days.

Third, the northern Midwest and the Mountain West experienced an increase in the number of

moderately cold days – with an average temperature between 20 and 50◦F (−6.7 and 10◦C) – since

1950, while the rest of the country saw a decline (see panel (e)). Looking ahead, everywhere except

the upper Midwest is projected to see fewer moderately cold days (see panel (f)). Fourth, the

number of very cold days – with an average temperature below 20◦F ( −6.7◦C) – has declined, and

is projected to continue to decline, in the upper Midwest, Northeast, and Mountain West regions.

In other regions, both the historical trend and the projected trend for the number of very cold days

is close to flat because such days are rare in those regions. Lastly, Figure 2 shows that the trends in

both overall precipitation and the number of extreme precipitation days vary substantially across

the country. A band running from east Texas to Maine has experienced a substantial increase

in average precipitation (see panel (a)). That trend is projected to continue, though many other

regions (Southeast, Southwest, and southern California) are projected to become drier. Historical

trends and projections for extreme precipitation are more spatially heterogeneous (see panels (c)

and (d)).

5 Historical Results

5.1 Simple Graphical Evidence

Before estimating the full IRFs with respect to weather shocks using the distributed lag model

laid out in Section 3.1.1, we first provide some simple graphical evidence that illustrates the key

correlations determining the longer-run level effects (ΩL in equation 6). The longer-run effect for

any given weather type estimated from the PDL model given by equation (5) will depend, after

differencing out time and county fixed effects, on the partial correlations between county growth

(∆yit) and each of three variables. Recall that the first term of the second-order polynomial in

equation (6) represents a county’s mean level of the weather variable over the prior 29 years. The

second term (times -1) is the county’s linear trend in that weather variable over the prior 29
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years, and the third term (times -1) is the quadratic component, capturing whether the trend is

accelerating or decelerating. It turns out that the estimated IRFs are broadly similar whether we

use a linear or a quadratic PDL specification, so here we focus on the first two terms.

Figure 3 shows a simple scatter plot for each of these two terms, first for the number of extreme

heat days (left panels) and then for the number of extreme cold days (right panels). For each

county, the scatter plot compares the 1980-2020 change in that term with the 1980-2020 change in

population growth.15 The purpose of taking the change in each variable is to remove county fixed

effects, as in the PDL regression model. Each dot in the plots represents a single county. The red

line in each panel is a linear OLS regression fit line.

The first scatter plot (panel (a)) reveals a clear negative relationship across counties between the

change in population growth and the change in the mean number of extreme heat days over the prior

29 years. That is, while the vast majority of counties saw population growth slow over the past four

decades, those whose growth slowed the most have been those where the average number of extreme

heat days increased the most. In addition, as shown in panel (b), counties with more positive trends

in the number of extreme heat days also tended to see greater slowing in population growth. Taken

together, these plots show that population growth in the United States over the past 40 years has

slowed more in places experiencing more extreme heat and places where the trend in extreme heat

has increased the most. Panels (c) and (d) reveal analogous patterns for extreme cold: population

growth has generally slowed less in counties where the number of extreme cold days fell more and

whose trend in extreme cold days is more negative. The formal regression analyses below confirm

these patterns for extreme heat and population and will reveal similar patterns for employment,

wages, and house prices.16 We will also uncover the relationships between these economic outcomes

and other weather variables.

5.2 Baseline Regression Results

Figure 4 shows the estimated impulse response functions for population with respect to each

of the six weather variables. The IRFs plot Ωh in equation (6) for h = 0 to 29, for each of the

weather variables, based on estimating the baseline PDL specification (equation (5)). We first find

that weather has no contemporaneous effect on population. In a sense, this result is not surprising.

Local year-to-year population changes are primarily driven by migration (as opposed to differences

in births and deaths), and standard economic models of migration decisions emphasize that the

net benefit of moving must be fairly large to offset moving costs. Hence, transitory fluctuations in

weather should not induce migration.

However, we find that several types of weather have statistically significant effects arising rel-

15To reduce noise stemming from idiosyncratic transitory shocks to county population growth at these endpoints,
we measure population growth in 1980 and 2020 using a 10-year trailing average and winsorize at the 1st and the
99th percentiles.

16Analogous scatter plots for employment, wages, and house prices are provided in Appendix Figures A2 – A4.

16



atively rapidly and increasing over the medium to longer run. In particular, the number of very

hot (average temperature between 70◦ and 80◦F (21.1-26.7◦ C)) and extremely hot (above 80◦F

(26.7◦C)) days both have a negative and highly statistically significant effect on county population

over these horizons. For example, the Ω29 IRF coefficient of -0.05 implies that an increase of one

extremely hot day in a single year, and one less day in the omitted category of 50◦ to 70◦F (10◦ –

21.1◦C), reduces local population 30 years hence by 0.05 percent. While this effect from a single

year increase is small, the implied effect from a long sequence of yearly increases can be substantial.

For instance, if the number of extreme heat days per year in a given county were to permanently

increase by 10, after 30 years population would be reduced by 300× (−0.054) = 16.2 percent. We

also find large longer-run negative effects from extreme cold days. We find no significant longer-run

effects for either precipitation variable, though we do see a medium-run decline in population in

response to extreme precipitation.

Panel (a) of Figure 5 visually summarizes these key moments from the estimated population

IRFs. Specifically, it plots the estimated contemporaneous effects (Ω0, shown in red) and the longer-

run effects (Ω29, shown in blue) for each of the six weather variables. For instance, the blue dot in

the “70-80” column, with a y-axis value of -0.054, corresponds to the end-point (year 29) of the IRF

shown in panel (a) of Figure 4, whereas the red dot near the zero line in that column corresponds to

the initial (year 0) point of that IRF. Panels (b)-(d) plot the same key moments from the estimated

IRFs for employment, house prices, and wages, respectively.17

Overall, the results for employment are similar to those for population. Short-run effects are

generally small and not statistically significant, while we find large negative longer-run effects in

many cases. For instance, the IRF coefficient at the 30-year horizon for extreme heat is -0.07, which

implies that an extra day of extreme heat (relative to the omitted category) in a year reduces local

employment 30 years ahead by 0.07 percent. We find that cold and extreme cold days also have

longer-run negative effects on employment, whereas the precipitation variables have no significant

longer-run effects.18

We next consider the effects of weather on annual wages. Hot days and extreme heat days

have small negative effects in the short run and larger negative effects in the longer run. The IRF

coefficient at the 30-year horizon is roughly -0.04 for hot days and -0.05 for extreme heat days. No

significant wage effects are found for cold, extreme cold, and extreme precipitation. However, we

find that increases in average annual precipitation have a negative effect on wages over the longer

run.

17The numbers underlying this figure and the IRFs for employment, house prices, and wages are provided in Online
Appendix Figures A5-A7 and Table A1.

18The negative longer-run effect of extreme temperatures on employment can be analyzed in greater detail by
looking at sectoral employment. Online Appendix Figure A8 shows the results of estimating our baseline PDL model
separately for employment in each major sector. The results point to negative and significant longer-run effects of hot
days and/or extreme heat days in weather-sensitive sectors such as Retail, Transportation, and Wholesale. We also
find large longer-run negative effects of cold and/or extreme cold days on employment in several sectors, especially
Agriculture, Construction, Manufacturing, Mining, and Retail.
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Turning to house prices, we find that they decline over the longer run in response to increases in

the number of hot days and extremely hot days, though the latter is statistically insignificant. As

for wages, precipitation also has a negative longer-run effect on house prices, statistically significant

at the 90 percent level.

In sum, these results indicate that both population and employment are affected by temperature

over the longer run in an inverse-U shaped pattern, with both cold and hot days having negative

effects. For house prices and wages, only hot days have negative longer-run effects. Average annual

precipitation also has negative effects on house prices and wages over the longer run, while having

no significant effect on population or employment.

To shed light on the mechanisms explaining how local climate changes affect these outcomes,

we present results in subsection 5.5 below for amenities and productivity, the key structural factors

determining population, employment, wages, and house prices according to our spatial equilibrium

model in Appendix B. First, however, in the next two subsections we assess the sensitivity the

results for these observed outcomes to alternative specifications and to the level of aggregation.

5.3 Robustness and Alternative Specifications

In this subsection, we evaluate the sensitivity of the baseline PDL model’s results to alternative

specifications, sample restrictions, and removing population weighting.

We focus on the sensitivity of our key empirical moments of interest: the longer-run level effect

(Ω̂29) for each outcome with respect to the different weather variables. Results for a range of

alternative specifications are provided in Figure 6. 19 The far-left series in each plot re-displays the

estimated longer-run weather effects from the baseline PDL results, the same series shown (in blue)

in Figure 5. The next series to the right report the results when we include a lagged dependent

variable in the model. In our baseline model, we omit a lagged dependent variable because the

model’s residual term should be approximately stationary for two reasons. First, time fixed effects

absorb any aggregate trends. Second, our dependent variables are log changes, so I(0). With a

lagged dependent variable, the longer-run effects are calculated as the sum of the coefficients on the

contemporaneous and lagged weather variables divided by the coefficient on the lagged dependent

variable. The estimated effects in this case are very similar to those from the baseline DL model.

The third series in the panels of Figure 6 shows the longer-run weather effects estimated using

the unrestricted distributed lag model (equation 2) – i.e., the model without imposing a polynomial

structure on the coefficients of the 30 weather lags. The estimated effects are very similar.20

We next explore the sensitivity of the results to the number of weather lags included. The fourth

series in Figure 6 repeats the estimation of the unrestricted DL model but with 9 rather than 29

lags in the baseline model (that is, 10 years of weather including the contemporaneous value). In

19The numbers underlying this figure, as well as the estimated contemporaneous effects, are provided in Online
Appendix Tables A2 – A5.

20The full IRFs for this unrestricted model are provided in Online Appendix Figures A9 – A12.
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general, the estimated longer-run effects are qualitatively similar to our baseline results, though

closer to zero. In particular, for employment and house prices, the estimated effects of hot and

extremely hot days become statistically insignificant.

The remaining series highlight the concerns with inferring longer-run effects of weather from the

estimated short-run effects. For instance, we shorten the lag length further, to just three years, in

the fifth series and down to just one year in the sixth series. The seventh and final series shows

the results when we drop lags of weather altogether. We see that estimated longer-run effects

generally become closer to zero and less statistically significant (despite smaller standard errors) as

one shortens the number of lags. As a result, empirical models with no lags or a limited number of

lags will only partially capture the longer-run effects of climate change.

In Figure 7, we consider the sensitivity of the results to several other alternative empirical

models, focusing on our key empirical moment of interest, the longer-run level effect (Ω̂29). The

far-left series in each plot re-displays the baseline PDL results from Figure 5. The next series

to the right tests whether the results are robust to dropping the large Sunbelt cities of Houston,

Dallas, Phoenix, Miami-Fort Lauderdale, and Tampa-St.Petersburg. Specifically, we exclude the 31

counties comprising these five commuting zones. These cities in Texas, Arizona, and Florida have

seen some of the largest increases in annual extreme heat days over the past 70 years in the country

(Figure 1) while also seeing rapid population growth, though that growth slowed to some extent

over time. While county fixed effects will absorb each county’s mean population growth (and mean

growth in employment, wages, and house prices in their regressions), it is possible that the slowing

in growth over time was an inevitable result of congestion effects as these cities became heavily

populated, and not driven by climate changes. However, one can see in Figure 7 that we obtain

very similar results as the baseline even after dropping these cities.21

We also examine whether the baseline results are unduly driven by coastal counties which a priori

could be more sensitive to climate changes either because extreme precipitation in coastal areas is

more likely to be associated with costly hurricanes or because hot days are less of a disamenity

in areas with beaches. To assess this, we re-estimate the baseline PDL model excluding coastal

counties. We find the results are little changed, indicating the effects of climate changes are similar

in coastal and non-coastal areas.

The next series in Figure 7 assesses how important population weighting is for our main results.

It shows the estimated longer-run effects from estimating the baseline model using unweighted OLS.

As one would expect if measurement error was present in the outcomes and/or the weather variables

are inversely related to population, the unweighted regressions tend to produce larger confidence

intervals. Nonetheless, the point estimates from the unweighted regressions generally are quite

similar to the baseline model with population weighting.

Lastly, we examine the possibility that unobserved local trends, correlated with local climate

21We also obtain very similar results to the baseline if we drop all counties in the key Sunbelt states of Florida,
Texas, and Arizona.
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changes, could be biasing our estimates of longer-run weather effects. We examine this in three

ways. First, we add region-specific linear time trends to the baseline model. The results are shown

in the next series to the right in Figure 7. Note that the county fixed effects in the population

growth and employment growth regressions already capture the longer-run migration trends in the

United States over the past several decades from the North to the South and West, stemming from

factors such as the diffusion of air conditioning in the South (Barreca et al. (2016)), right-to-work

laws in the South (Holmes (1998)), the de-industrialization of the North, and the general “moving-

to-nice-weather” trends (Rappaport (2007) ). Region-specific linear time trends in these growth

regressions will absorb any deceleration over time in these region-to-region movements. We find the

longer-run weather effects are generally robust to accounting for these trends.

Second, we allow the time fixed effects in the baseline model to vary by region. In this case,

identification stems from cross-county variation in changes over time in weather and growth in

the outcome variable within a region. Region-specific time fixed effects will absorb not only the

aforementioned secular trends in migration between regions but also higher frequency shocks to

entire regions. The results are again generally similar to the baseline results. One exception is the

results for precipitation. This specification yields a negative and significant effect of precipitation

on employment but no effect on wages, where as the baseline specification yields a negative and

significant effect on wages but no effect on employment. Thus, while we can be fairly confident that

precipitation reduces local wage bills in the longer-run, it is not entirely clear whether the result

comes primarily from employment or wages.

Third, we consider whether “pre-trends” in weather – omitted in our baseline specification –

could be biasing our longer-run weather effect estimates. In our setting, the concept of “pre-trends”

is complicated because, as discussed earlier, part of the longer-run economic effects of past weather

may be through ex-ante adaptation. For example, households may choose to move in response to

past adverse weather shocks because those past shocks alter households expectations of climate –

i.e., the probability distribution of weather shocks – going forward. However, it is also possible that

agents form expectations based on other information, either in addition to or instead of past weather

realizations. Because our baseline specification omits this information, which could be correlated

with past weather, this could lead to an omitted variable bias. To test this, we add 10 leads of the

weather variables to our baseline PDL specification (equation 5). The results are shown in Appendix

Figure A13. For comparison, we also re-estimated the baseline PDL specification for this sample,

which is 10 years shorter because of the addition of the 10 leads. We find that including future

weather realizations has virtually no effect on the estimated longer-run effects of past weather. This

suggests that, to the extent that our results are driven by ex-ante adaptation, agents’ expectations

are well-approximated by adaptive expectations.
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5.4 Commuting Zone Results

A potential concern with using county-level variation to study the effects of place-based climate

changes on our variables of interest is that people do not need to live in the same county in which

they work. Yet, at least prior to the recent surge in remote work, people generally have lived

and worked in the same local labor market or commuting zone. If people are able to work in a

county that has an adverse climate but high labor demand (e.g., firms may locate in poor climate

areas because of cheap land and/or natural resources) while living in a nearby county that has a

better climate, differences between the population response to climate changes and the employment

response, and differences between the house price response and wage response, could be misleading.

In addition, people and firms considering moving may think more about the climate of a local labor

market than a narrower area such as a county, because a local labor market is more informative

about future employment and market opportunities. If so, climate changes in the local labor market

will be more relevant than those at the county level. In particular, because our baseline model omits

weather in other counties within the same local labor market, which is correlated with weather in

the focal county, if adverse climate changes in those nearby counties directly affects our outcome

variables, our estimated effects will be biased. The bias would be away from zero if adverse climate

changes in nearby counties just exacerbate the negative impacts of own county weather on amenities

and productivity. The bias could be toward zero if people are relatively immobile across commuting

zones but mobile within zones. In that case, negative climate changes in a county’s neighbors will

at least partially offset the effects of that county’s own negative climate changes.

We examine these issues by aggregating our data to the commuting zone (CZ) level and then

re-estimating our baseline PDL model. Our CZ definitions come from the Census Bureau and

correspond to 1990 commuting zones. We aggregate population and employment simply by summing

across counties within the CZ. For the house price index and each of the weather variables, we take

a population-weighted average of the variable across counties within the CZ. For wages, we sum

county real wage and salary income within the CZ and divide by total CZ employment. Using

these CZ-level data, we estimate equation 5 with i now denoting CZs and αi representing CZ fixed

effects. Standard errors are based on clustering by CZ (to account for serial correlation) and year

(to account for spatial correlation across CZs).

The CZ-level estimates of the longer-run weather effects (Ω̂29) are shown in Figure 8. The

figure also re-displays the county-level results from Figure 5 for comparison. The CZ-level results

are generally quite similar, both qualitatively and quantitatively, to the county-level results, though

they are less precisely estimated due to the smaller number of observations. In particular, extremely

cold days, hot days, and extremely hot days reduce population over the longer run at the CZ level

by a similar magnitude as we found for the county level. Hot days are also still found to lower

house prices, but the effect at the CZ level is no longer statistically significant. For wages, the

CZ-level results are broadly similar to the county level results, showing declines in wages for hot

days, extremely hot days, and precipitation. We also continue to find a negative longer-run effect
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on employment from cold and extremely cold days. However, the employment effects of hot and

extremely hot days are no longer statistically significant. Overall, the similarity between county-

and CZ-level results suggests that any bias stemming from cross-county spillovers within local labor

markets is likely to be minimal.

5.5 Implied Effects of Climate Changes on Amenities and Productivity

To examine the theoretical mechanisms by which local climate changes affect the spatial distri-

bution of population, employment, wages, and house prices, we develop a simple spatial equilibrium

model, which we summarize below. The full model is presented in Appendix B. In the spirit of

Rosen (1979) and Roback (1982), our spatial equilibrium model points to local amenities and pro-

ductivity (Al and zl, for a given location l) as the key structural factors determining these spatial

allocations.

As the appendix describes, our framework builds on the model of Hsieh & Moretti (2019), but

splitting households into two types: workers and non-workers, which, for simplicity, we refer to

as “retirees.” This modeling approach is useful in interpreting the different empirical responses

of employment and population to weather variables. Absent this distinction, there would be no

difference between employment and population when the population in each location is assumed to

be fully employed, the standard assumption in most models in the literature.

In addition to deciding in which regions to live, households choose their consumption of traded

and nontraded goods (e.g., housing). Workers receive wage income derived from inelastically sup-

plying one unit of labor to firms in their location. Retirees receive a fixed income from the federal

government (“retirement benefits”). For simplicity, workers and retirees are hand-to-mouth agents

and therefore fully consume their income each period. In each location, perfectly competitive firms

produce a costlessly traded good subject to local productivity shocks. Similarly, firms in the housing

sector produce housing services using a combination of traded goods and land. Both types of house-

holds choose where to locate based on their utility. By impacting local productivity and amenities,

climate changes affect local economies through household consumption, production, and location

decisions (see, also, Desmet & Rossi-Hansberg (2015), Desmet et al. (2018), Cruz & Rossi-Hansberg

(2021), Nath (2020)).

In this subsection, we use a calibrated version of the model, combined with the data on observed

outcomes, to back out these structural factors for every county and year in our historical sample.22

We then estimate the longer-run effects of climate changes on local amenities and productivity

using the same empirical specification – the PDL model – used above (i.e., setting ylt ≡ log(Ylt) in

equation (5) to log(Alt) or log(zlt)).

In Appendix B, we show that the log values of amenities (Alt) and productivity (Zlt) can be

22Given that the model is static, we impose the equilibrium conditions period by period to infer the levels of
amenities and productivity at each point in time. See Bilal (2023) and Kleinman et al. (2023) for recent approaches
for solving dynamic spatial equilibrium models.
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derived from the model’s equilibrium conditions as functions of worker population (Lw
lt), retiree

population (Lr
lt), and house prices (plt). The following expression gives the log values of amenities:

log(Alt) = (1/θ)log(Lr
lt) + (1− α)log(plt) + f r

t , (7)

where θ is a parameter governing the strength of idiosyncratic location preferences, α is the share of

housing in households’ expenditure, and f r
t is a latent variable reflecting retirees’ benefits and their

average indirect utility across all locations. Because f r
t only varies by time, not by location, it will

be absorbed in our regressions by the time fixed effects and need not be observed. This equation

makes clear that the longer-run effect of a given weather variable on the amenity value of a location

(relative to the rest of the nation) is a weighted sum of the effects on non-worker population and

house prices (plt), with positive weights.

Similarly, the log values of productivity can be expressed as follows:

log(zlt) = (1− ϕ+ 1/θ)log(Lw
lt)− (1/θ)log(Lr

lt) + αlog(plt)− f r
t + fw

t

= (1− ϕ+ 1/θ)log(Lw
lt)− (1/θ)log(1− Lw

lt) + αlog(plt)− f r
t + fw

t ,
(8)

where ϕ is the labor elasticity in traded good production and fw
t reflects workers’ average indirect

utility across all locations. Like f r
t , f

w
t only varies by time, not by location, and will be absorbed

in our regressions by the time fixed effects. From equation (8), we see that the longer-run effect

of a given weather variable on local productivity (relative to the rest of the nation) is a weighted

sum of the effects on worker population, non-worker population, and house prices. Increases in

worker population and house prices or declines in non-worker population are associated with greater

productivity. Comparing equation (8) to equation (7), one can see that the key to separately

identifying productivity from amenities is the level of worker population relative to non-worker

population and house prices.

We calibrate the parameters such that the share of housing in households’ expenditures is

α = 0.3, the labor elasticity in traded good production is ϕ = .7, and the strength of idiosyn-

cratic location preferences is given by 1/θ = 0.2. Since the model abstracts from unemployment

fluctuations (based on the assumption that climate changes do not affect steady-state unemployment

rates), we measure worker population using employment, which implies the non-worker population

is simply total population minus employment.

The estimated marginal effects of each weather variable on our model-implied values of amenities

and productivity are shown in Figure 9. To help with interpretation, we also show the estimated

marginal effects for the non-worker population. As in Figure 5, we plot both the contemporaneous

and longer-run (30-year out) effects. Consistent with the lack of contemporaneous weather effects

on population, employment, and house prices in Figure 5, we find no significant contemporaneous

effects on either amenities or productivity. By contrast, we find larger and more significant longer-
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run effects. In particular, increases in heat and extreme heat days and in precipitation reduce both

amenity values and productivity (though the effect of precipitation on productivity is not quite

statistically significant). Cold days and extreme cold days, on the other hand, reduce productivity

(though the effect of extreme cold days is not quite statistically significant) but have virtually zero

effect on amenities.

These changes in amenities and productivity help us interpret the results for our observed

outcomes. In particular, the negative effects of hots days on population, employment, and house

prices in Figure 5 can be attributed to reductions in both amenities and productivity. In addition,

notice that cold days have much larger negative effects on employment than they do on non-worker

population, which may even increase, and they have no effect on house prices. These relatively

large negative effects on employment can be attributed to the negative effects of cold days on

productivity. Through the lens of the model, cold days reduce productivity leading to a negative

effect on employment. This puts downward pressure on house prices, but that downward pressure is

offset by upward pressure from a higher non-worker population, with non-workers attracted by (and

offsetting) any declines in house prices combined with unchanged amenities. Lastly, we find that

precipitation reduces house prices, while having no effect on population or employment. This can

be explained by the finding that precipitation reduces both amenities and productivity, reducing

both non-worker and worker populations, which unambiguously lowers house prices. The decline in

productivity can also explain the negative effect of precipitation on wages.

5.6 Allowing for Heterogeneity

The true impacts of climate changes on local economies are likely to be heterogeneous, differing

depending on various characteristics of the local area. Two important characteristics examined in

prior studies are income and typical climate.

To look at the role of local area income, we extend the baseline specification by interacting each

weather variable with “high income” and “low income” indicators, measuring whether the county

is in the top third (tercile) or bottom third, respectively, in terms of mean income per capita over

1951-2000. These interactions allow us to test whether economic outcomes respond differently to

weather shocks in richer counties. The estimated longer-run effects are shown in the top row of

Figure 10. We find substantial evidence of heterogeneity in weather effects in terms of county income,

especially for population. In particular, we find stark differences in the marginal effects of weather

on population over the longer run for high-income versus low-income counties. The effects of hot

days, cold days, and precipitation are negative and significant for low-income counties, but positive

and significant for high-income counties. The negative effects are generally larger, in absolute value,

than the positive effects, consistent with the negative average-county effects found earlier.23 A likely

explanation for this result is that low-income areas are more negatively impacted by adverse weather

23This result is reminiscent of the cross-country findings of Dell et al. (2012), which pointed to negative temperature
effects for low-income countries but no significant effects for high-income countries.

24



shocks because they are less able to afford adaptation technologies/capital, such as air conditioning,

insulation, levees, and pumps, and associated energy costs. High-income counties, by contrast, are

less negatively impacted, or even positively impacted, due to these adaptive investments.

We next investigate whether the marginal effects of weather depend on the historical/typical

climate of a local area. Similar to Carleton & Hsiang (2016), Nath (2020), and Carleton et al.

(2020), we extend our baseline specification by adding, for each weather variable, an interaction

between the variable and an indicator for whether the county’s 1951-2020 average of that variable

is above the median across all counties. For example, in addition to having the number of days in a

county-year with a daily average temperature below 20◦F (−6.7◦C), we add an interaction between

that variable and an indicator for whether the county is among the top half of counties in terms

of its average annual number of below 20◦ days. Counties with high average values for a given

weather variable likely are better adapted, or “more accustomed,”to that type of weather. These

interactions allow us to test whether economic outcomes in such counties respond less, or at least

less negatively, to shocks in each type of weather.

The estimated longer-run effects, separated for counties above and below the median for each

weather variable, are shown in the middle row of Figure 10. The IRFs for counties more accustomed

to that type of weather are shown in red, while counties less accustomed to that type of weather

are shown in blue. In general, we find that counties more acclimated to a given type of weather in

many cases tend to benefit in terms of population and employment compared with other counties.

This could reflect the role of learning/adaptation. As we showed in Appendix A, agents with

adaptive expectations will anticipate a given type of weather based on past experience. As a result

of historical adaptation to their typical climate, better acclimated regions may be more attractive

and productive places to live and work.

Of course, expectations of future climate in a given area likely come not just from observing

past weather and trends, but may also be colored by ideological beliefs. To examine this possibility,

we make use of the Yale Climate Survey.24 This survey, conducted annually from 2014-2021, asks

households throughout the United States about climate change beliefs. In particular, one question

simply asks households, “Is global warming happening?” We use the fraction of respondents within

each county answering yes as a crude measure of climate change belief. We assume that this fraction

for 2014-21 is roughly proportional to its true 1969-2020 average. That is, while there has probably

been an upward trend in that variable nationally, the cross-county distribution likely has been

fairly stable. The estimated marginal weather effects in places more accepting of global warming

are more likely to reflect changing, forward-looking expectations than are more climate-denying

places. Similar to the analyses of county income and historical climate, we interact each weather

variable (and its lags) with a high-global-warming-belief dummy variable and a low-global-warming-

belief dummy variable, corresponding to counties in the top and bottom terciles of that fraction’s

distribution.

24https://climatecommunication.yale.edu/visualizations-data/ycom-us/
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The results are shown in the bottom panel of Figure 10 . Interestingly, the negative longer-run

effects of cold days and hot days on population appears to be isolated to counties whose residents

are skeptical of global warming. By contrast, cold and hot days are found to have positive effects

on population in counties with greater belief in global warming. One possible hypothesis explaining

these results is that places anticipating increasing temperatures in the future have made adaptive

investments to not only tolerate their local climate changes but indeed to take advantage of them.

By contrast, places in denial of global warming are likely not making these investments and hence are

seeing their local amenity and/or productivity values deteriorating, leading to relative population

declines over time. Similarly, we find positive longer-run employment effects for hot and extremely

hot days in counties with greater belief in global warming, though this is not a generalized pattern

across all weather variables.

Lastly, we examine whether the longer-run marginal weather effects have changed over time.

Forward-looking expectations, such as least-square learning, are one reason climate changes could

cause these effects to change over time, as discussed in Section ??. In addition, the amenity or

productivity values of particular types of climate could change over time. To test for time-varying

marginal weather effects, we add, for each current and lagged weather variable, an interaction with a

linear time trend (i.e., year minus 1980). We then report the implied 30-year effects for each weather

variable as of 1980 and 2020. The results, shown in Appendix Figure A14, indicate that there has

been little if any change in these longer-run effects over time, consistent with households having

approximately adaptive expectations and there being little change in the amenity and productivity

values of climate over time.

6 Projections

6.1 Methodology

In this section, we examine how climate changes over the decades ahead may affect the economic

geography of the United States? Specifically, we combine the estimated PDL model (with and with-

out heterogeneous effects) with county-level weather projections to forecast changes in population

and employment from 2020 to 2050 for every county in the contiguous United States. To isolate the

projected change in each outcome due solely to climate changes, we calculate the difference between

the projected change under a climate change scenario and the projected change under a no climate

change scenario.

To forecast how a given outcome, yit, will change over the next few decades, we first predict

annual growth in that outcome for each out-of-sample year from 2021 to 2050 based on the parameter

estimates of equation (5) and weather values for a given scenario s.

26



∆̂ysit =
L∑

ℓ=0

2∑
p=0

ϕ̂pℓ
pws

i,t−ℓ + α̂i. (9)

We then obtain projected longer-run changes in outcomes from 2021 to 2050 ( ̂ysi,2050 − ysi,2020) by

cumulating the predicted yearly changes (∆̂ysit) over 2021 to 2050.

Finally, we calculate the changes due solely to climate change by taking the difference in

̂ysi,2050 − ysi,2020 under a climate change (CC) scenario and a no climate change (0) scenario:

̂∆yCC,0
i,2020−50 =

(
̂yCC

i,2050 − yCC
i,2020

)
−
(

̂y0i,2050 − y0i,2020

)
(10)

The climate change scenario is based on the county-level weather projections constructed in

Hsiang et al. (2017) and Rasmussen et al. (2016) corresponding to the IPCC RCP 4.5 global

greenhouse gas scenario (see Section 4 for further description). For each county and each weather

variable in our model, we first construct a provisional projected value for each year from 2021 to

2050 based on the projected within-year distributions of daily temperature and precipitation given

by Hsiang et al. (2017). We then estimate the county-specific linear trend from 2021 to 2050 for

each variable. Our final projections assume each weather variable starts at its observed value in

2020 and then follows this trend until 2050. The no climate change scenario assumes that each

weather variable is constant from 2021 to 2050 and equal to its 1991–2020 county-specific mean.

There are three important considerations regarding the interpretation of these projections. First,

note that the estimated county fixed effects in equation 9 are the same in both scenarios and hence

get differenced out in equation A15. Second, past weather values are the same under both scenarios.

Thus, ̂∆yCC,0
i,2020−50 captures the projected change in the outcome variable for each county due solely

to projected future climate changes. Third, equation (9) assumes the time fixed effects, αt, in the

historical regression model (equation (1)) are equal to zero in out-of-sample years. The time fixed

effects in the historical regression model absorbed past aggregate (i.e., national or global) shocks.

Setting future aggregate shocks to zero, in both scenarios, implies that the resulting ∆̂yit for future

years should be interpreted as projections of local growth relative to the national average. In order

to interpret these projections as projections of the absolute change in population or employment

for each county, inclusive of national/global climate change effects as well as other national growth

shocks, one would need to add auxiliary projections of national growth under each scenario.

In sum, our estimates provide projections of the change in the spatial distributions of population

and employment between 2020 and 2050 due to projected future climate changes.25

25For employment outcomes, 2019 is the latest year of data, so projections are changes from 2019 to 2050 rather
than 2020 to 2050 as is the case with population.
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6.2 Results

6.2.1 Geographical Pattern of Reallocation

Our estimates of ̂∆yCC,0
i,2020−50, based on the baseline PDL model, are shown in Figure 11 for each

of the economic outcomes. The projected climate changes are predicted to cause a general shifting

of population from the Southeast and parts of the Southwest to the North, the Mountain West, and

most of the Pacific coastline. These patterns are driven primarily by the projected trends toward

relatively more extreme heat days in the Southeast and Southwest. The projected shifts in the

spatial distribution of employment show a similar pattern to that of population.26

These projected movements in people and jobs would represent a dramatic reversal of the late

20th century pattern of movement from the Northeast and industrial Midwest toward the Sunbelt.

One way to see this shift is by examining how the geographical correlation between population

growth and climate has changed over time. The top four scatter plots in Figure 12 show the

relationship between historical extreme heat climate – measured by the average number of extreme

heat days per year over 1951-2050 – and average population growth for each of the past four decades.

The bottom two scatter plots show the same relationship using our projections for county population

growth (based on RCP 4.5), for 2021–2035 and 2036–2050. The link between extreme heat and

population growth was strongly positive in the 1980s, with a slope coefficient 0.01 and a t-statistic

above 10. However, that relationship weakened substantially over the subsequent two decades and

vanished entirely over 2010-2020. The projections for the decades ahead show a continuation of

this pivot, turning modestly negative over 2021-2035 and strongly negative over 2036-2050. The

change in this correlation over time (at least historically) could reflect changing preferences, such as

increasingly negative amenity values associated with an extreme heat day of a given temperature.

However, we think a more natural explanation is simply that the “hot” climate counties have gotten

considerably hotter – with extreme heat days becoming both hotter and more frequent – to the

point where they are no longer as tolerable as they once were. For instance, the 90th percentile

county over 1951-1980 averaged about two months (62 days) per year of extreme heat (daily average

temperature was above 80◦F (26.7◦C)). That number grew to 72 days by 1991-2020.

Figure 13 repeats this exercise but for extreme cold. Panel (a) shows that the correlation

across counties between extreme cold and population growth was strongly negative in the 1980s.

This correlation weakened but remained negative and significant in the 1990s and 2000s (panels b

and c). However, the correlation was essentially zero by the 2010s. As shown in panels (e) and

26We also calculate projections of population and employment based on estimates from the panel PDL model
that allows for heterogeneous weather effects along the dimensions of income and historical climate. The results are
shown in Online Appendix Figure A15. The projections have similar overall patterns to those of the baseline/no-
heterogeneity model, but with some interesting differences. In particular, income, which tends to be higher in urban
areas, plays a important role. While population is generally projected to decrease in the South relative to the North,
urban areas in the South, such as Miami, Atlanta, Memphis, Raleigh-Durham, and Dallas-Fort Worth, are found
to be exceptions. In addition, employment is generally projected to see relative increases in the North, but higher
income counties near Chicago, Detroit, Pittsburgh, New York City, and Boise show up as exceptions.
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(f), our projections point to faster population growth in historically cold counties compared to

other counties. As with extreme heat, this could reflect changing preferences but a more natural

interpretation is that historical cold places are seeing fewer extreme cold days over time and higher

temperatures on those days, making these places relatively more attractive than in the past.

6.2.2 Aggregate Magnitude of Reallocation

To quantify the aggregate magnitude of these projected spatial reallocations of people and jobs

due to climate change, we calculate the mean absolute deviation (MAD) between county population

or employment growth (∆yi) and the national average of county population or employment growth

( ∆̄y), where growth is measured as the 30-year change in log population or employment. Note

that, in the projections, average county growth is zero. In the historical regressions, average county

growth is absorbed by year fixed effects, which are unobservable for future years. Thus, this MAD

collapses to be simply the mean absolute value of county population (or employment) growth. We

calculate the MAD for each of the three climate change scenarios, corresponding to the IPCC RCP

2.6, 4.5, and 8.5 global greenhouse gas emissions scenarios. For comparison, we also calculate the

MAD for the no climate change scenario, in which the weather variables in every county are held

fixed at their 1990-2020 means.

The main results, based on our baseline PDL model, are shown in panel A of Table 1. In the

no climate change baseline, the MAD of county population growth is 0.75 percentage point at an

annual rate. This is nearly identical to the actual mean absolute population growth over 1990 to

2020. We find that climate change increases population reallocation relative to the baseline by

0.26, 0.56, or 0.74 p.p. depending on the climate change scenario (2.6, 4.5, or 8.5, respectively). In

other words, climate change is projected to increase population reallocation by between 35 and 99

percent. The projected increase in employment reallocation is similar. Specifically, we find climate

change increases employment reallocation by between 0.30 and 1.07 p.p., or 29 to 103 percent,

relative to the no climate change scenario. These magnitudes are large and support the contention

by Partridge et al. (2017) and others that mobility likely will be a first-order channel of climate

change adaptation in the United States. 27

We can also assess whether the large projected increase in reallocation due to climate change is

driven more by the projected increases in hot days or the projected decreases in cold days. To do

this, first we calculate the MAD for a climate change scenario in which the two heat days variables

follow the RCP 4.5 projections while the other weather variables stay at their 1991-2020 average.

We then repeat this but only allowing the two cold days variables to follow the RCP 4.5 projections.

The results are shown in the first two rows of panel B of Table 1. We find that the projected declines

in cold and extremely cold days are more important for reallocation, especially for employment,

27See also Bilal & Rossi-Hansberg (2023). Using a dynamic spatial equilibrium model fitted to match reduced-form
evidence of extreme weather events’ effects on economic activity, they find that welfare costs of climate change would
be much more concentrated absent migration, with workers in affected areas experiencing much larger losses.
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than are the projected increases in hot days. For instance, allowing for just projected increases

in the two hot days variables causes the MAD of population growth to increase relative to the no

climate change scenario by 23%, from 0.75 to 0.92. Allowing for just projected decreases in cold

days causes reallocation to go up by 57%, from 0.75 to 1.18. For employment, allowing just cold

days to change as projected makes reallocation go up from 1.04 to 1.80, which is approximately

equal to the reallocation from allowing all variables to change (1.77). In other words, cold days

explain about three-quarters of the 75% increase in population reallocation due to climate change

(1.18/.75 of the 1.31/.75 total increase) and 100% of the increase in employment reallocation due

to climate change.

Lastly, we highlight the importance of the long lag process in our PDL model compared to the

static model (i.e., the “No lags” model shown in Figure 6), which only accounts for contemporaneous

weather effects. Following the methodology in Section 6.1, but using the static model instead of the

PDL model, we obtain county-level projections of population and employment based on the RCP

4.5 scenario. The implied amount of reallocation for population and employment from the static

model is shown in the last row of Panel B. The static model yields levels of reallocation very similar

to the no climate change scenario. This is not surprising given that we found near-zero weather

effects from the static model as shown in Figure 6.

7 Conclusion

This paper estimated how the spatial distribution of U.S. economic activity has been impacted

by local climate changes in recent decades and projected how this spatial distribution could change

further in the decades ahead given current climate change scenarios. First, we exploited the sub-

stantial geographic variation in weather histories across U.S. counties to estimate the historical

longer-run effects of weather on local population, employment, wages, and house prices. Specifi-

cally, we estimated the full dynamic response of economic outcomes to weather shocks using panel

distributed lag (DL) models covering 30 years of weather. We showed how a substantial number

of lags is necessary to appropriately capture the longer-run responses to changes in weather, as

contemporaneous and short-run effects are typically small and not statistically significant. Impor-

tantly, our approach captures the effects of both ex-post and ex-ante adaptation to the extent that

agents have adaptive expectations.

Our historical results point to large and long-lasting effects of climate changes on local economic

outcomes. This finding should inform ongoing debates about the role of internal migration as

a channel of climate change adaptation. Partridge et al. (2017) stated, “While future migration

will likely be a first-order driver of U.S. adaptation, we now lack key knowledge that would help

us forecast its role decades in advance.” These authors also argued that “with high inter-regional

capital and labor mobility, migration should be a primary adaptation mechanism as households and

firms relocate to their preferred location, much as U.S. population realigned from the Northeast

30



and Manufacturing Belt to the Sunbelt and western states after World War II.” We show that in

fact this process already has begun. In particular, the cross-county correlation between population

growth and hot climates has steadily shifted since the 1980s from being strongly positive to slightly

negative.

We used the estimated panel models to project the spatial distribution of population, employ-

ment, wages, and house prices out to 2050 using historical weather augmented with county-level

weather projections based on alternative climate change scenarios. The results point to sizable in-

creases in the aggregate amounts of population and employment reallocation due to climate change.

People and jobs are generally projected to move from the Sunbelt to the North and Mountain West,

which would continue and accelerate the reversal of the post-World War II pattern of faster popu-

lation growth in hot places.

In sum, despite evidence of a decline in U.S. internal migration over the past several decades (see,

for instance, Jia et al. (2023)), our evidence suggests that population movements will nevertheless

play an important role in adapting to climate change. Whether this process can be facilitated with

policy and structural changes is an important issue for future research.
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A Appendix – Adaptive Expectations

In this appendix, we extend our empirical framework to incorporate adaptive expectations.

When this is the case, our baseline specification accounts not just for ex-post adaptation, but also

for ex-ante adaptation. To see this we extend the specification in equation (1) to allow for the

possibility that expectations of future weather affects current economic outcomes:

∆yit =
L∑

ℓ=0

βℓwi,t−ℓ +
k∑

h=1

δhw
e,t+h
i,t + αi + αt + εit,

where we,t+h
i,t is agents’ expectations, as of period t, of weather in period t+ h in area i.

Suppose that agents in area i have standard adaptive expectations. Specifically, suppose they

form expectations (forecasts) of future weather using a linear combination of past weather:

we,t+h
i,t =

L∑
ℓ=0

ϕ̂h
i,ℓwi,t−ℓ + θ̂hi , for all h > 0,

where θ̂hi is a local fixed effect and ϕ̂h
i,ℓ are weights in the linear combination of past weather. These

parameters could be subjectively chosen or estimated via least squares, separately for each future

horizon h. Substituting this expectations term into the previous equation yields expression (??) in

the text:

∆yit =
L∑

ℓ=0

βℓwi,t−ℓ +
k∑

h=1

δh

[
L∑

ℓ=0

ϕ̂h
i,ℓwi,t−ℓ + θ̂hi

]
+ αi + αt + εit

=
L∑

ℓ=0

(βℓ +
k∑

h=1

δhϕ̂h
i,ℓ)wi,t−ℓ + (αi +

k∑
h=1

δhθ̂hi ) + αt + εit

=
L∑

ℓ=0

β̃i,ℓwi,t−ℓ + α̃i + αt + εit,

where β̃i,ℓ = βℓ +
∑k

h=1 δhϕ̂
h
i,ℓ and α̃i = αi +

∑k
h=1 δhθ̂

h
i .

B Appendix – A Simple Spatial Equilibrium Model

In this appendix, we first introduce a simple spatial equilibrium model in the spirit of Rosen

(1979) and Roback (1982) to illustrate the impact of climate change on local economies. Our

framework builds on the model of Hsieh & Moretti (2019), but in which we introduce two types of

households: workers and non-workers, which, for simplicity, we will hereafter refer to as “retirees.”28

28While retirees account for roughly 50 percent of the U.S. working-age population not in the labor force, other
reasons are also leading those of working age to opt out of the labor market, such as disabilities, attending school,
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This distinction will be useful in interpreting the different empirical responses of employment and

population to weather variables below. Absent this distinction, there would be no difference between

employment and population, as is the case in most models in the literature that the population in

a location is fully employed. In addition to deciding in which regions to live, households choose

their consumption of traded and nontraded goods (e.g., housing). 29 Workers receive wage income

derived from inelastically supplying one unit of labor to firms in their location. Retirees receive

a fixed income from the federal government (“retirement benefits”). We assume that workers and

retirees are hand-to-mouth agents and therefore fully consume their income each period. In each

location, perfectly competitive firms produce a costlessly traded good subject to local productivity

shocks. Similarly, firms in the housing sector produce housing services using a combination of

traded goods and land. Both types of households choose where to locate based on their utility.

By impacting local productivity and amenities, climate changes affect local economies through

household consumption, production, and location decisions (see, also, Desmet & Rossi-Hansberg

(2015), Desmet et al. (2018), Cruz & Rossi-Hansberg (2021), Nath (2020)). We now describe

the different aspects of the model and the channels through which climate changes impact local

economies.

B.1 Households

The economy is composed of a continuum of locations l ∈ [0, N ] populated by two types of house-

holds, workers and retirees, indexed by i = {w, r}. In each location, the continuum of households

j ∈ [0, 1] of type i are assumed to be risk neutral with preferences εij,lu(c
i
l, h

i
l), where

u(cil, h
i
l) =

(
Al(c

i
l)
α(hil)

1−α
)

and cil is the consumption of a traded good, hil is the consumption of a nontraded good (i.e.,

housing), and Al denotes local amenities. Note that we assume that workers and retirees have the

same preferences over local amenities. We assume that Al is a stochastic variable that reacts to

changes in climate, as specified below. In addition, preferences are also subject to an idiosyncratic

preference shock, εij,l, that influences households’ preference for a given location. The shock is

assumed to follow a Fréchet distribution with shape parameter θ. We let Li
l be the measure of type

i locating in each location l. Since as in most of the literature we abstract from variations in local

unemployment rates, the population of workers will also reflect local employment.30

We assume that workers and retirees are hand-to-mouth agents and therefore fully consume

their income each period. Irrespective of location, retirees receive a transfer y (in unit of the traded

good) from the federal government financed through a labor income tax. They spend this income

or caring for family members, among others.
29We consider nontraded goods as representing housing even though, for simplicity, we abstract from relevant

features in housing markets that are not central to our analysis.
30See Kline & Moretti (2013) for a spatial equilibrium model with labor search frictions and unemployment.
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on the consumption of the traded good and on housing: crl +plh
r
l = yr, where pl is the relative price

of housing. In contrast, workers supply one unit of labor inelastically to firms in location l at wage

rate ωl. Like retirees, they spend their after-tax income on the consumption of the traded good and

housing: cwl + plh
w
l = (1− τ)ωl = ywl .

Given the absence of saving and investment, households maximize their per-period utility subject

to their budget constraint. Thus, the optimality conditions dictate that workers and retirees both

allocate a fraction α and 1− α of their income to expenditures on the traded good and housing

cwl = αywl plh
w
l = (1− α)ywl

crl = αyr plh
r
l = (1− α)yr.

B.2 Production of the traded good

Firms in each location produce the traded good using local labor, Ll:

Yl = zlL
ϕ
l .

Profit maximization yields that following labor demand expression:

Ll =

(
ϕ
zl
wl

) 1
1−ϕ

.

B.3 Housing

Each location is endowed with an exogenous amount of land, Tl, which can be used in combi-

nation with traded goods to produce housing services:

Hl = γ−γ
(
Y d
l

)γ
(Tl)

1−γ ,

where Y d
l is the amount of traded goods used. From profit maximization, the supply of housing

services can be written as

Hl = Tlp
η
l

where η = γ
1−γ

is the housing supply elasticity.

B.4 Climate change

Consider a vector Wl,t denoting a set of characteristics representing local climate (frequency of

cold days, frequency of hot days, precipitation, etc.). Let W∗
l denote the ideal, nonstochastic, set

of climate characteristics for location l and let d(Wl,t,W∗
l ) be a measure of distance between Wl,t

and W∗
l . We assume that local productivity and amenities are functions of local climate:
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xl,t = (1−Ψx(d(Wl,t,W∗
l ))) x̃l,t for x ∈ {z, A}

where Ψx : R≥0 → [0, 1) is a damage function that increase with the distance between current

and optimal climate characteristics, while a tilde indicates the pre-damage level of a variable. As

in Hsiang (2016), local climate characteristics are a function of local climate via the distribution

Wl,t ∽ G(Cl,t) . By impacting local climate differently depending on location (e.g., elevation,

latitude, longitude, or coastal proximity), global climate change increases local damages to different

degrees. Higher damages reduce productivity and amenities.

B.5 Spatial equilibrium

Households decide where to live by maximizing the indirect utility of living in different loca-

tions, V i
l , given the realization of the idiosyncratic preference shock. This maximization yields the

following expression

Li
l =

(V i
l )

θ∑
k (V

i
k )

θ
=

(
V i
l

V i

)θ

such that the decision to live in a given location depends on the indirect utility in this location

relative to all other ones (V i ≡
∑

k (V
i
k )

θ
), where the indirect utility is given by

V i
l =

(
ψAl

yil
p1−α
l

)
with ψ ≡ αα(1 − α)(1−α). Thus, higher income, higher amenities, and lower house prices each

increases the indirect utility of living in location l.

Using this expression, the supply of type i in location l becomes

Li
l =

ψAl
yil

p1−α
l

V i

θ

.

Equating the demand and supply of workers in each location, we further get the population of

workers in location l

Lw
l =

(
ψAl(1− τ)ϕ

zl
pl

1

V w

) 1
1−ϕ+1/θ

. (B1)

Since retirees by definition are out of the labor force, their population in location l is given by

Lr
l =

(
ψAl

yr

p1−α
l

)θ

(V r)θ
. (B2)
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Note that while the sum of Lw
l and L

r
l represent the total population of a location, total employ-

ment is given by Lw
l We use this distinction below to interpret our empirical results through the

lens of the model.

Thus, climate change can impact the population through different channels. By reducing ameni-

ties, climate change will induce the populations of workers and retirees to fall. However, for workers,

a reduction in productivity would be an additional factor directly contributing to a lower popula-

tion. Note that climate change will have a greater impact on population the lower is 1/θ, i.e., the

lower are preferences for a given location. In this case, more workers and retirees are willing to

relocate to other locations given climate-induced changes in productivity and amenities. Equations

(B1) and (B2) will be useful in accounting for our empirical responses to climate change below in

terms of its impact on amenities and productivity.

Finally, climate changes can affect house prices through changes in productivity and amenities,

as shown by the following equilibrium condition

pl =

[
(1− α)(Lw

l (1− τ)ωl + Lr
l y)

Tl

] 1
η

. (B3)

First, holding local population fixed, climate changes would lower house prices through declines in

productivity and wages. In addition, house prices would tend to decline with reductions in workers’

or retirees’ populations (via lower productivity or amenities). How much local climate changes

impact house prices versus population is regulated by the housing supply elasticity, η.

B.6 Amenity and Productivity

The log values of amenities (Alt) and productivity (Zlt) in the text can be derived from the

equilibrium equations for worker population (Lw
lt) and non-worker population (Lr

lt), equations (B1)

and (B2), respectively. Specifically, taking the log of both sides of equation (B2) and solving for

log(Alt) yields:

log(Alt) = (1/θ)log(Lr
lt) + (1− α)log(plt) + f r

t , (B4)

where f r
t = log(V r

t )− log(yrt )− log(ψ).

Similarly, taking the logs of both sides of equation (B1 ), solving for log(zlt), and using the

equation above for log(Alt) , we get:

log(zlt) = (1− ϕ+ 1/θ)log(Lw
lt)− (1/θ)log(Lr

lt) + αlog(plt)− f r
t + fw

t

= (1− ϕ+ 1/θ)log(Lw
lt)− (1/θ)log(1− Lw

lt) + αlog(plt)− f r
t + fw

t ,
(B5)

where fw
t = log(V w

t )− log(ψ)− log(1− τ)− log(ϕ).
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Table 1: Effect of Climate Changes on Spatial Reallocation

Mean Absolute Deviation
between County Growth and National Average County Growth

(2020 - 2050, Annualized, Percentage Points)

Panel A. Main Results

Population Employment
No climate change scenario 0.75 1.04
RCP 2.6 scenario 1.01 1.34
RCP 4.5 scenario 1.31 1.77
RCP 8.5 scenario 1.49 2.11

Panel B. Additional Scenarios

Population Employment
Climate change only from hot days (RCP 4.5) 0.92 1.16
Climate change only from cold days (RCP 4.5 1.18 1.80
RCP 4.5 using Static model 0.77 1.04
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Figure 1: Historical and Projected Temperature Trends across U.S. Counties

Yearly Trend in # of Days with Daily Average Temperature Above 80◦F (26.7◦C)
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Notes: See notes after Figure 2.
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Figure 2: Historical and Projected Precipitation Trends across U.S. Counties

Yearly Trend in Average Daily Precipitation

(a) 1951-2020
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Notes: Each map shows the estimated yearly linear trend in the indicated weather variable over the
indicated time span for each county in the contiguous United States. The 1951-2020 trends are based
on county-level daily historical weather data provided by the National Centers for Environmental In-
formation (NCEI). The 2021-2050 trends are based on the down-scaled county-level projections from
Hsiang et al. (2017) associated with the IPCC RCP 4.5 global emissions scenario.
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Figure 3: Cross-County Relationship between Change in Population Growth and

Change in Level or Trend of Extreme Temperature Days

1980 to 2020

(a) Change in Level of Extreme Heat Days
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(b) Change in Level of Extreme Cold Days
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(c) Change in Trend of Extreme Heat Days
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(d) Change in Trend of Extreme Cold Days
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Notes: Each panel displays a scatter plot, where each dot represents a single county. In both panels,
the y-axis values are the change (in percentage points) in the county’s population growth rate over
the period 1980 to 2020. To reduce noise stemming from idiosyncratic transitory shocks to population
growth at these endpoints, population growth in 1980 and 2020 is measured using a 10-year trailing
average and winsorized at 1st and 99th percentiles. We drop counties with zero extreme heat days over
1951-2020. In panel A, the x-axis values are the 1980 to 2020 change in the 30-year trailing average of
the number of extreme heat days in the county (i.e., the average annual number of extreme heat days
over the period 1991-2020 minus that over the period 1951-1980). In panel B, the x-axis values are the
1980 to 2020 change in the 30-year trailing trend of the number of extreme heat days in the county
(i.e., the average annual change in the number of extreme heat days over the period 1991-2020 minus
that over the period 1951-1980). The red line in each panel is a linear OLS regression fit line.



Figure 4: Impulse Response of Population to Weather

Third-Order Polynomial Distributed Lag Model

(a) Heat (Days 70 to 80◦F (21.1-26.7◦C))
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(b) Extreme Heat (Days above 80◦F (26.7◦C))
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(c) Cold (Days 20 to 50◦F (−6.7-10◦C))
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(d) Extreme Cold (Days below 20◦F (−6.7◦C))
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(f) Extreme Precipitation
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Notes: These plots show the estimated impulse response function of the indicated weather variable for
the indicated outcome. The underlying regression includes county and year fixed effects. Standard
errors are two-way clustered by county and by year. The inner shaded region shows the 90 percent
confidence interval, and the outer lighter shaded region shows the 95 percent confidence intervals.
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Figure 5: Contemporaneous and Longer-Run Marginal Effects of Weather

(a) Population
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(d) Wages
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Notes: These plots show the estimated contemporaneous and longer-run marginal effect of the weather variable indicated on the x-axis on the
level of the outcome variable indicated in the panel heading. The underlying regression includes county and year fixed effects. Standard errors
are two-way clustered by county and by year. The range shown above and below the marker displays the 90 percent confidence interval.
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Figure 6: Longer-Run Marginal Effects of Weather

Alternative Specifications

(a) Population
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Notes: Each plot shows the estimated longer-run marginal weather effects based on the baseline regression specification as well as several
alternative specifications. Each series (color) corresponds to a different specification. The dots for each series show the longer-run (30-year)
marginal effect of the weather variable indicated on the x-axis on the level of the outcome variable indicated in the panel heading. The range
shown above and below the marker displays the 90 percent confidence interval based on standard errors that are two-way clustered by county
and by year.
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Figure 7: Longer-Run Marginal Effects of Weather

Alternative Specifications, Samples, and Weighting

(a) Population
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(c) House Prices
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Notes: Each plot shows the estimated longer-run marginal weather effects based on the baseline specification and sample as well as those based
on various alternative specifications or sample restrictions. Each series (color) corresponds to a different specification (using baseline sample)
or sample restriction (using baseline specification). The dots for each series show the marginal effect of the weather variable indicated on the
x-axis on the level of the outcome variable indicated in the panel heading. The range shown above and below the marker displays the 90 percent
confidence interval based on standard errors that are two-way clustered by county and by year.
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Figure 8: Longer-Run Marginal Effects of Weather

Based on Data Aggregated to Commuting Zone Level

(a) Population
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(c) House Prices
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(d) Wages
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Notes: Each plot shows the estimated longer-run marginal weather effects using county level data as well as those using commuting zone (CZ)
level data. The county-level regressions include county and year fixed effects. The CZ-level regressions include CZ and year fixed effects. Standard
errors for the county level regressions are two-way clustered by county and by state-year, while CZ-level standard errors are two-way clustered
by CZ and by year. The range shown above and below the markers display the 90 percent confidence interval.
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Figure 9: Marginal Effects of Weather on Amenities and Productivity

(a) Amenities
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(b) Productivity
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(c) Nonworker Population
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–•– Contemporaneous (Ω0) –•– Longer-Run (Ω29)

Notes: These plots show the estimated contemporaneous and longer-run marginal effect of the weather
variable indicated on the x-axis on the level of the outcome variable indicated in the panel heading. The
underlying regression includes county and year fixed effects. Standard errors are two-way clustered by
county and by year. The range shown above and below the marker displays the 90 percent confidence
interval.
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Figure 10: Longer-Run Effects Allowing for Heterogeneity

Splitting counties by whether 1969-2020 mean income p.c. is in
top (–•–) or bottom (–•–) tercile
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(b) Employment
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Splitting counties by whether 1951-2020 mean weather (for each weather variable) is
above (–•–) or below (–•–) median

(c) Population
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(d) Employment

●

●

●

●

●

●●
●

●

●

−0.4

−0.2

0.0

0.2

Below 20 20−50 50−70 70−80 Above 80

M
ar

gi
na

l E
ffe

ct
 o

f T
em

pe
ra

tu
re

●

●

●

●

−4

−2

 0

 2

Prcp. Extreme
 Prcp.

M
arginal E

ffect of P
recipitation

Splitting counties by whether belief that global warming is affecting
weather is in top (Red) or bottom (Blue) tercile
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(f) Employment
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Figure 11: Projected Changes in Spatial Distribution of U.S. Economic Activity from 2020 to 2050

Due to Projected Climate Changes, Based on Basic Third-Order PDL Model and RCP 4.5 Scenario
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Notes: Each map shows the projected change in the log of the indicated outcome between 2020 and 2050 due to climate change (i.e., ̂∆yCC,0
i,2020−50

from equation ). The units are changes in log values, so 1.0 (-1.0) corresponds to doubling (halving) of the level of the outcome.
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Figure 12: Cross-County Relationship between Population Growth and Extreme Heat

(a) 1980-1989

Slope = .01 (t = 11.44)
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(b) 1990-1999

Slope = .0036 (t = 4.306)
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(c) 2000-2009

Slope = .0036 (t = 4.749)
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(d) 2010-2020
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(e) 2021-2035 (Projected)
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(f) 2036-2050 (Projected)

Slope = -.0466 (t = -36.662)
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Notes: Each panel displays a scatter plot, where each dot represents a single county. The y-axis shows
the county’s average annual population growth rate over the indicated period. The x-axis shows the
30-year trailing average of the number of extreme heat days in the county as of the start of the period.
The red line in each panel is a linear OLS regression fit line. The slope estimate and its t-statistic are
displayed.
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Figure 13: Cross-County Relationship between Population Growth and Extreme Cold

(a) 1980-1989
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(b) 1990-1999

Slope = -.0152 (t = -13.956)
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(c) 2000-2009

Slope = -.0129 (t = -13.108)
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(d) 2010-2020
Slope = -.0007 (t = -.884)
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(e) 2021-2035 (Projected)

Slope = .0102 (t = 12.013)
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(f) 2036-2050 (Projected)

Slope = .0867 (t = 66.126)
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Notes: Each panel displays a scatter plot, where each dot represents a single county. The y-axis shows
the county’s average annual population growth rate over the indicated period. The x-axis shows the
30-year trailing average of the number of extreme cold days in the county as of the start of the period.
The red line in each panel is a linear OLS regression fit line. The slope estimate and its t-statistic are
displayed.
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Online Appendix A – Not For Publication

Table A1: Population, Employment, Wage, & House Price Responses to Weather

Polynomial Distributed Lag Model (3rd Order)
(1) (2) (3) (4)

Population Employment Wages House Prices
Contemporaneous Effects:
Number of days below 20F -0.00408 -0.0131 0.00782 -0.00500

[0.063] [0.052] [0.111] [0.772]

Number of days between 20 and 50F 0.00188 -0.00272 -0.00116 -0.0162
[0.192] [0.475] [0.695] [0.184]

Number of days between 70 and 80F 0.000289 0.00515 -0.0104 -0.0158
[0.805] [0.161] [0.000] [0.155]

Number of days temp above 80F 0.00226 0.0158 -0.00632 0.00337
[0.266] [0.029] [0.110] [0.824]

Daily precipitation -0.0244 0.0189 -0.0252 0.0377
[0.353] [0.822] [0.708] [0.839]

Number of days with extreme precipitation -0.00420 -0.0244 0.0212 0.000995
[0.513] [0.256] [0.274] [0.982]

Sum of Contemp. & Lagged Effects:
Number of days below 20F -0.0923 -0.141 0.0264 0.00791

[0] [.002] [.438] [.9360]

Number of days between 20 and 50F -0.0157 -0.0940 0.0282 -0.0187
[.242] [.002] [.146] [.783]

Number of days between 70 and 80F -0.0505 -0.0381 -0.0419 -0.131
[0] [.102] [.01] [.007]

Number of days above 80F -0.0540 -0.0716 -0.0497 -0.0795
[0] [.009] [.004] [.159]

Daily precipitation -0.0301 -0.528 -1.322 -3.403
[.915] [.43] [.006] [.058]

Number of days extreme precipitation -0.0731 0.205 0.0941 -0.0468
[.382] [.232] [.467] [.891]

Fixed Effects: County Year County Year County Year County Year
Observations 127284 127177 125107 84924

p-values shown in brackets.
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Table A2

Population

(1) (2) (3) (4) (5) (6) (7) (8)
PDL(0,29) ADL(0,29) ADL(0,9) ADL(0,3) ADL(0,1) ADL(0,0) PDL(1,29) PDL(3,29)

Contemporaneous Effects:
Number of days below 20F -0.00408 -0.00508 -0.00380 -0.00568 -0.00361 -0.00477 -0.00442 -0.00429

[0.063] [0.029] [0.107] [0.019] [0.141] [0.052] [0.010] [0.010]

Number of days between 20 and 50F 0.00188 0.000190 0.00223 0.00225 0.00251 0.00239 0.00139 0.000897
[0.192] [0.904] [0.151] [0.152] [0.117] [0.138] [0.239] [0.431]

Number of days between 70 and 80F 0.000289 0.00150 0.000227 -0.000763 -0.00135 -0.000749 0.000758 0.000650
[0.805] [0.220] [0.852] [0.547] [0.312] [0.584] [0.439] [0.498]

Number of days temp above 80F 0.00226 0.00275 0.000979 -0.00124 -0.00257 -0.00225 0.00231 0.00190
[0.266] [0.160] [0.624] [0.574] [0.265] [0.339] [0.148] [0.229]

Daily Precipitation -0.0244 -0.0113 -0.0247 -0.0301 -0.0464 -0.0414 -0.0153 -0.0160
[0.353] [0.652] [0.349] [0.272] [0.106] [0.153] [0.459] [0.434]

Number of days with extreme precipitation -0.00420 -0.00790 -0.00515 -0.00356 -0.00273 -0.00328 -0.00458 -0.00375
[0.513] [0.215] [0.439] [0.594] [0.689] [0.631] [0.423] [0.501]

Sum of Contemp. & Lagged Effects:
Number of days below 20F -0.0923 -0.0853 -0.0394 -0.0347 -0.0144 -0.00477 -0.104 -0.0744

[0] [0] [0] [0] [0] [.052] [0] [0]

Number of days between 20 and 50F -0.0157 -0.00881 -0.00620 -0.00470 0.000100 0.00239 -0.0220 -0.0192
[.242] [.504] [.306] [.118] [.962] [.138] [.148] [.087]

Number of days between 70 and 80F -0.0505 -0.0447 -0.0211 -0.0102 -0.00252 -0.000750 -0.0474 -0.0313
[0] [0] [0] [.001] [.202] [.584] [0] [0]

Number of days above 80F -0.0540 -0.0474 -0.0482 -0.0205 -0.00737 -0.00225 -0.0544 -0.0377
[0] [0] [0] [0] [.023] [.338] [0] [0]

Daily Precipitation -0.0301 -0.0881 0.0116 0.0119 -0.0590 -0.0414 0.0567 0.0694
[.915] [.747] [.923] [.846] [.162] [.152] [.864] [.778]

Number of days extreme precipitation -0.0731 -0.0858 -0.0983 -0.0571 -0.0192 -0.00328 -0.104 -0.0755
[.382] [.285] [0] [.001] [.078] [.631] [.322] [.339]

Sum of LDV coefficients 0.296 0.404
[0] [0]

Fixed Effects: County Year County Year County Year County Year County Year County Year County Year County Year
Observations 127284 127284 127284 127284 127284 127284 127283 127281

p-values shown in brackets.
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Table A3

Total Employment

(1) (2) (3) (4) (5) (6) (7) (8)
PDL(0,29) ADL(0,29) ADL(0,9) ADL(0,3) ADL(0,1) ADL(0,0) PDL(1,29) PDL(3,29)

Contemporaneous Effects:
Number of days below 20F -0.0131 -0.00477 -0.0151 -0.0189 -0.0133 -0.0158 -0.0141 -0.0148

[0.052] [0.511] [0.030] [0.008] [0.059] [0.024] [0.045] [0.038]

Number of days between 20 and 50F -0.00272 -0.000993 -0.00434 -0.00538 -0.00307 -0.00357 -0.00319 -0.00327
[0.475] [0.816] [0.273] [0.179] [0.442] [0.364] [0.426] [0.424]

Number of days between 70 and 80F 0.00515 0.00168 0.00242 0.00279 0.00209 0.00414 0.00479 0.00465
[0.161] [0.641] [0.516] [0.459] [0.591] [0.289] [0.209] [0.229]

Number of days temp above 80F 0.0158 0.0176 0.0169 0.0146 0.0131 0.0139 0.0158 0.0162
[0.029] [0.009] [0.018] [0.050] [0.080] [0.055] [0.035] [0.032]

Daily Precipitation 0.0189 -0.0263 0.0386 0.0364 0.0106 0.00780 0.0131 0.00974
[0.822] [0.738] [0.632] [0.659] [0.900] [0.927] [0.879] [0.910]

Number of days with extreme precipitation -0.0244 -0.0181 -0.0333 -0.0315 -0.0273 -0.0273 -0.0251 -0.0250
[0.256] [0.355] [0.112] [0.143] [0.209] [0.210] [0.255] [0.261]

Sum of Contemp. & Lagged Effects:
Number of days below 20F -0.141 -0.111 -0.0848 -0.0914 -0.0332 -0.0158 -0.142 -0.157

[.002] [.013] [0] [0] [0] [.024] [.002] [.001]

Number of days between 20 and 50F -0.0940 -0.0679 -0.0290 -0.0346 -0.0156 -0.00357 -0.0928 -0.0993
[.002] [.024] [.052] [0] [.002] [.364] [.002] [.002]

Number of days between 70 and 80F -0.0381 -0.0429 0.0139 -0.0140 -0.00839 0.00414 -0.0394 -0.0452
[.102] [.064] [.27] [.079] [.121] [.289] [.085] [.067]

Number of days above 80F -0.0716 -0.0499 -0.00809 -0.0157 -0.00183 0.0139 -0.0718 -0.0801
[.009] [.063] [.605] [.099] [.8310] [.055] [.008] [.006]

Daily Precipitation -0.528 -0.765 0.551 0.0629 0.150 0.00780 -0.523 -0.587
[.43] [.225] [.043] [.71] [.217] [.927] [.42] [.4]

Number of days extreme precipitation 0.205 0.176 -0.142 -0.0892 -0.0589 -0.0273 0.200 0.213
[.232] [.293] [.041] [.055] [.069] [.21] [.232] [.239]

Sum of LDV coefficients -0.0872 -0.142
[0] [0]

Fixed Effects: County Year County Year County Year County Year County Year County Year County Year County Year
Observations 127177 127177 127177 127177 127177 127177 127160 127125

p-values shown in brackets.
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Table A4

Wages

(1) (2) (3) (4) (5) (6) (7) (8)
PDL(0,29) ADL(0,29) ADL(0,9) ADL(0,3) ADL(0,1) ADL(0,0) PDL(1,29) PDL(3,29)

Contemporaneous Effects:
Number of days below 20F 0.00782 0.00402 0.00779 0.00899 0.00910 0.00902 0.0109 0.0124

[0.111] [0.453] [0.126] [0.080] [0.068] [0.068] [0.029] [0.014]

Number of days between 20 and 50F -0.00116 -0.00600 -0.000943 0.000216 0.0000138 0.000340 -0.000303 0.000583
[0.695] [0.059] [0.756] [0.944] [0.996] [0.909] [0.920] [0.846]

Number of days between 70 and 80F -0.0104 -0.0119 -0.00912 -0.0109 -0.0109 -0.0109 -0.00989 -0.0103
[0.000] [0.000] [0.001] [0.000] [0.000] [0.000] [0.001] [0.001]

Number of days temp above 80F -0.00632 -0.0139 -0.00943 -0.00867 -0.00903 -0.00918 -0.00446 -0.00442
[0.110] [0.001] [0.016] [0.026] [0.019] [0.015] [0.259] [0.267]

Daily Precipitation -0.0252 -0.0666 -0.0425 -0.0392 -0.0435 -0.0376 -0.0213 -0.0367
[0.708] [0.288] [0.518] [0.560] [0.513] [0.573] [0.751] [0.582]

Number of days with extreme precipitation 0.0212 0.0226 0.0245 0.0236 0.0226 0.0210 0.0225 0.0237
[0.274] [0.212] [0.200] [0.225] [0.246] [0.283] [0.250] [0.223]

Sum of Contemp. & Lagged Effects:
Number of days below 20F 0.0264 0.0331 0.00334 0.0117 0.00856 0.00902 0.0223 0.0249

[.438] [.318] [.8220] [.283] [.208] [.067] [.475] [.524]

Number of days between 20 and 50F 0.0282 0.0249 -0.00927 0.00380 0.000800 0.000340 0.0244 0.0285
[.146] [.18] [.314] [.598] [.855] [.909] [.172] [.204]

Number of days between 70 and 80F -0.0419 -0.0435 -0.0243 -0.0117 -0.00789 -0.0109 -0.0408 -0.0502
[.01] [.005] [.009] [.058] [.059] [0] [.006] [.008]

Number of days above 80F -0.0497 -0.0589 -0.0485 -0.0182 -0.0112 -0.00918 -0.0471 -0.0574
[.004] [0] [0] [.006] [.022] [.015] [.003] [.004]

Daily Precipitation -1.322 -1.429 -0.512 -0.248 -0.155 -0.0376 -1.228 -1.556
[.006] [.001] [.019] [.064] [.095] [.5730] [.006] [.004]

Number of days extreme precipitation 0.0941 0.0887 0.0875 0.0485 0.0118 0.0210 0.0897 0.119
[.467] [.472] [.1] [.155] [.652] [.283] [.46] [.433]

Sum of LDV coefficients -0.172 -0.372
[0] [0]

Fixed Effects: County Year County Year County Year County Year County Year County Year County Year County Year
Observations 125107 125107 125107 125107 125107 125107 125088 125052

p-values shown in brackets.
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Table A5

House Prices

(1) (2) (3) (4) (5) (6) (7) (8)
PDL(0,29) ADL(0,29) ADL(0,9) ADL(0,3) ADL(0,1) ADL(0,0) PDL(1,29) PDL(3,29)

Contemporaneous Effects:
Number of days below 20F -0.00500 0.00571 0.000883 -0.00395 0.00188 0.00108 -0.00875 -0.00868

[0.772] [0.712] [0.961] [0.819] [0.914] [0.951] [0.554] [0.554]

Number of days between 20 and 50F -0.0162 -0.00224 -0.0100 -0.0138 -0.0120 -0.0146 -0.0171 -0.0180
[0.184] [0.818] [0.391] [0.257] [0.332] [0.232] [0.101] [0.079]

Number of days between 70 and 80F -0.0158 -0.0126 -0.0150 -0.0166 -0.0179 -0.0158 -0.0138 -0.0127
[0.155] [0.148] [0.180] [0.144] [0.120] [0.167] [0.145] [0.175]

Number of days temp above 80F 0.00337 0.00623 0.00856 0.00864 0.00559 0.00803 -0.000102 -0.000835
[0.824] [0.595] [0.558] [0.558] [0.706] [0.581] [0.994] [0.949]

Daily Precipitation 0.0377 -0.0721 -0.0174 0.00420 -0.0155 -0.0161 0.0485 0.0424
[0.839] [0.642] [0.921] [0.982] [0.936] [0.933] [0.767] [0.795]

Number of days with extreme precipitation 0.000995 -0.0247 -0.00441 0.0181 0.0176 0.0192 0.000745 0.00331
[0.982] [0.518] [0.916] [0.684] [0.693] [0.667] [0.985] [0.934]

Sum of Contemp. & Lagged Effects:
Number of days below 20F 0.00791 0.130 -0.0211 -0.0925 -0.0165 0.00108 0.00458 -0.00195

[.9360] [.126] [.754] [.005] [.454] [.9510] [.966] [.984]

Number of days between 20 and 50F -0.0187 0.0675 -0.0505 -0.0599 -0.0282 -0.0146 -0.0213 -0.0187
[.783] [.227] [.195] [.004] [.077] [.232] [.775] [.782]

Number of days between 70 and 80F -0.131 -0.129 -0.0451 -0.0652 -0.0298 -0.0158 -0.123 -0.100
[.007] [.003] [.157] [.005] [.059] [.167] [.019] [.04]

Number of days above 80F -0.0795 -0.0509 -0.0308 -0.0178 0.0108 0.00803 -0.0733 -0.0585
[.159] [.341] [.35] [.463] [.5740] [.581] [.234] [.294]

Daily Precipitation -3.403 -4.436 0.465 -0.298 -0.0972 -0.0161 -3.683 -3.357
[.058] [.005] [.469] [.476] [.712] [.9330] [.064] [.073]

Number of days extreme precipitation -0.0468 -0.164 -0.0302 0.0416 0.0288 0.0192 -0.0117 0.0245
[.891] [.589] [.843] [.665] [.648] [.667] [.975] [.9410]

Sum of LDV coefficients 0.203 0.264
[0] [0]

Fixed Effects: County Year County Year County Year County Year County Year County Year County Year County Year
Observations 84924 84924 84924 84924 84924 84924 83867 81792

p-values shown in brackets.
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Figure A1: Mean County Distribution of Daily Average Temperature

(a) Full Sample, 1951-2020
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(b) 1951-1960
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(c) 2011-2020
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Notes: Each panel shows a histogram of the percentage of days in the indicated time period with a
daily average temperature in each 5-degree bin, averaged over all U.S. counties. Vertical red lines are
shown at 20, 50, 70, and 80 degrees. The five temperature ranges cut by these four values correspond
to the temperature range frequency bins used in our regression analyses.
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Figure A2: Cross-County Relationship between Change in Employment Growth and

Change in Level or Trend of Extreme Heat Days

1980 to 2020

(a) Change in Level of Extreme Heat Days
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(b) Change in Trend of Extreme Heat Days
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Notes: Each panel displays a scatter plot, where each dot represents a single county. In both panels,
the y-axis values are the change (in percentage points) in the county’s employment growth rate over
the period 1980 to 2020. To reduce noise stemming from idiosyncratic transitory shocks to employment
growth at these endpoints, employment growth in 1980 and 2020 is measured using a 10-year trailing
average and winsorized at 1st and 99th percentiles. In panel A, the x-axis values are the 1980 to 2020
change in the 30-year trailing average of the number of extreme heat days in the county (i.e., the average
annual number of extreme heat days over the period 1991-2020 minus that over the period 1951-1980).
In panel B, the x-axis values are the 1980 to 2020 change in the 30-year trailing trend of the number of
extreme heat days in the county (i.e., the average annual change in the number of extreme heat days
over the period 1991-2020 minus that over the period 1951-1980). The red line in each panel is a linear
OLS regression fit line.



Figure A3: Cross-County Relationship between Change in Wage Growth and

Change in Level or Trend of Extreme Heat Days

1980 to 2020

(a) Change in Level of Extreme Heat Days

-1
0

-5
0

5
10

Ch
an

ge
 in

 W
ag

e 
G

ro
w

th
 (p

.p
.)

0 10 20 30 40
Change in 30-Year Trailing Average of # of Extreme Heat Days

(b) Change in Trend of Extreme Heat Days
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Notes: Each panel displays a scatter plot, where each dot represents a single county. In both panels,
the y-axis values are the change (in percentage points) in the county’s wage growth rate over the period
1980 to 2020. To reduce noise stemming from idiosyncratic transitory shocks to wage growth at these
endpoints, wage growth in 1980 and 2020 is measured using a 10-year trailing average and winsorized
at 1st and 99th percentiles. In panel A, the x-axis values are the 1980 to 2020 change in the 30-year
trailing average of the number of extreme heat days in the county (i.e., the average annual number of
extreme heat days over the period 1991-2020 minus that over the period 1951-1980). In panel B, the
x-axis values are the 1980 to 2020 change in the 30-year trailing trend of the number of extreme heat
days in the county (i.e., the average annual change in the number of extreme heat days over the period
1991-2020 minus that over the period 1951-1980). The red line in each panel is a linear OLS regression
fit line.
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Figure A4: Cross-County Relationship between Change in House Price Growth and

Change in Level or Trend of Extreme Heat Days

1980 to 2020

(a) Change in Level of Extreme Heat Days
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(b) Change in Trend of Extreme Heat Days
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Notes: Each panel displays a scatter plot, where each dot represents a single county. In both panels,
the y-axis values are the change (in percentage points) in the county’s house price growth rate over
the period 1980 to 2020. To reduce noise stemming from idiosyncratic transitory shocks to house price
growth at these endpoints, house price growth in 1980 and 2020 is measured using a 10-year trailing
average and winsorized at 1st and 99th percentiles. In panel A, the x-axis values are the 1980 to 2020
change in the 30-year trailing average of the number of extreme heat days in the county (i.e., the average
annual number of extreme heat days over the period 1991-2020 minus that over the period 1951-1980).
In panel B, the x-axis values are the 1980 to 2020 change in the 30-year trailing trend of the number of
extreme heat days in the county (i.e., the average annual change in the number of extreme heat days
over the period 1991-2020 minus that over the period 1951-1980). The red line in each panel is a linear
OLS regression fit line.
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Figure A5: Impulse Response of Employment to Weather

Third-Order Polynomial Distributed Lag Model

(a) Heat (Days 70 to 80◦F (21.1-26.7◦C))
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(b) Extreme Heat (Days above 80◦F (26.7◦C))
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(c) Cold (Days 20 to 50◦F (−6.7-10◦C))
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(d) Extreme Cold (Days below 20◦F (−6.7◦C))
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(e) Precipitation
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(f) Extreme Precipitation
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Notes: These plots show the estimated impulse response function of the indicated weather variable for
the indicated outcome. The underlying regression includes county and year fixed effects. Standard
errors are two-way clustered by county and by year. The inner shaded region shows the 90 percent
confidence interval, and the outer lighter shaded region shows the 95 percent confidence intervals.
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Figure A6: Impulse Response of Wages to Weather

Third-Order Polynomial Distributed Lag Model

(a) Heat (Days 70 to 80◦F (21.1-26.7◦C))
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(b) Extreme Heat (Days above 80◦F (26.7◦C))
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(c) Cold (Days 20 to 50◦F (−6.7-10◦C))
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(d) Extreme Cold (Days below 20◦F (−6.7◦C))
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(e) Precipitation
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(f) Extreme Precipitation
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Notes: These plots show the estimated impulse response function of the indicated weather variable for
the indicated outcome. The underlying regression includes county and year fixed effects. Standard
errors are two-way clustered by county and by year. The inner shaded region shows the 90 percent
confidence interval, and the outer lighter shaded region shows the 95 percent confidence intervals.
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Figure A7: Impulse Response of House Prices to Weather

Third-Order Polynomial Distributed Lag Model

(a) Heat (Days 70 to 80◦F (21.1-26.7◦C))
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Notes: These plots show the estimated impulse response function of the indicated weather variable for
the indicated outcome. The underlying regression includes county and year fixed effects. Standard
errors are two-way clustered by county and by year. The inner shaded region shows the 90 percent
confidence interval, and the outer lighter shaded region shows the 95 percent confidence intervals.
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Figure A8: Contemporaneous and Longer-Run Effects of Weather on Sectoral Employment
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Notes: See notes for Figure 5. 68



Figure A9: Cumulative Impulse Response of Population to Weather

Unrestricted Distributed Lag Model (29 lags)
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Notes: These plots show the estimated cumulative impulse response function of the indicated weather
variable for the indicated outcome. The underlying regression includes county and year fixed effects.
Standard errors are two-way clustered by county and by year. The inner shaded region shows the
90 percent confidence interval, and the outer lighter shaded region shows the 95 percent confidence
intervals.
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Figure A10: Cumulative Impulse Response of Employment to Weather

Unrestricted Distributed Lag Model (29 lags)
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Notes: These plots show the estimated cumulative impulse response function of the indicated weather
variable for the indicated outcome. The underlying regression includes county and year fixed effects.
Standard errors are two-way clustered by county and by year. The inner shaded region shows the
90 percent confidence interval, and the outer lighter shaded region shows the 95 percent confidence
intervals.
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Figure A11: Cumulative Impulse Response of Wages to Weather

Unrestricted Distributed Lag Model (29 lags)
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Notes: These plots show the estimated cumulative impulse response function of the indicated weather
variable for the indicated outcome. The underlying regression includes county and year fixed effects.
Standard errors are two-way clustered by county and by year. The inner shaded region shows the
90 percent confidence interval, and the outer lighter shaded region shows the 95 percent confidence
intervals.
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Figure A12: Cumulative Impulse Response of House Prices to Weather

Unrestricted Distributed Lag Model (29 lags)
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Notes: These plots show the estimated cumulative impulse response function of the indicated weather
variable for the indicated outcome. The underlying regression includes county and year fixed effects.
Standard errors are two-way clustered by county and by year. The inner shaded region shows the
90 percent confidence interval, and the outer lighter shaded region shows the 95 percent confidence
intervals.
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Figure A13: Longer-Run Marginal Effects of Weather

Assessing the Role of Pre-Trends
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(c) House Prices
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(d) Wages
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Notes: Each plot shows the estimated longer-run marginal weather effects based on the baseline specification as well as those based on a
specification that adds 10 yearly leads of each weather variable to the baseline specification. The same regression sample (which is shortened
by 10 years due to the inclusion of the leads) is used in both cases. Each series (color) corresponds to a different specification. The dots for
each series show the marginal effect of the weather variable indicated on the x-axis on the level of the outcome variable indicated in the panel
heading. The range shown above and below the marker displays the 90 percent confidence interval based on standard errors that are two-way
clustered by county and by year.
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Figure A14: Time-Varying Longer-Run Marginal Effects of Weather
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(c) House Prices
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(d) Wages
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–•– Implied Effects as of 1980 –•– Implied Effects as of 2020

Notes: These plots show the estimated longer-run marginal effect of the weather variable indicated on the x-axis on the level of the outcome
variable indicated in the panel heading. The underlying regression includes county and year fixed effects and interacts each weather variable
with a linear time trend (year minus 1980). The blue series shows the uninteracted 30-year effects while the red series shows the implied 30-year
effects as of 2020, calculated as the uninteracted 30-year effect plus the interaction coefficients times 40 (2020 - 1980). Standard errors are
two-way clustered by county and by year. The range shown above and below the marker displays the 90 percent confidence interval.

74



Figure A15: Projected Changes in Spatial Distribution of U.S. Economic Activity from 2020 to 2050
Due to Projected Climate Changes, Based on Full Third-Order PDL Model and RCP 4.5 Scenario

Allowing Weather Effects to Vary by Local Historical Climate and Income
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Notes: Each map shows the projected change in the log of the indicated outcome between 2020 and 2050 due to climate change (i.e., ̂∆yCC,0
i,2020−50

from equation ). The units are changes in log values, so 1.0 (-1.0) corresponds to doubling (halving) of the level of the outcome. Projections are
based on estimated historical regression model that allows each weather variable’s effects to vary both with the historical (1951-2020) mean of
that variable in the county, which we refer to as the “local historical climate,” and with historical (1969-2020) mean income in the county.
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