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Abstract

This paper provides an analytically tractable theoretical framework to study the optimal

supply of central bank reserves when the demand for reserves is uncertain and nonlinear. We fully

characterize the optimal supply of central bank reserves and associated market equilibrium. We

find that the optimal supply of reserves under uncertainty is greater than that absent uncertainty.

With a sufficient degree of uncertainty, it is optimal to supply a level of reserves that is abundant

(on the flat portion of the demand curve). The model captures the empirical observation that the

variability of interest rate spreads depends on reserves supply.
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1 Introduction

Central banks have multiple goals in supplying reserves to the banking system. They target a level

of the policy rate, aim to minimize its high-frequency volatility around that target, and experience

other costs and benefits related to the amount of aggregate reserves. These goals may involve

tradeoffs; for example, a larger supply of reserves reduces the mean level of the policy rate and its

volatility but may also involve costs not directly related to interest rate control while leading to a

larger central bank balance sheet. Since the introduction of large-scale asset purchases in 2008, the

Federal Open Market Committee (FOMC) has changed the monetary policy operating framework

from one of scarce reserves with daily interventions to one of ample reserves without regular

interventions. This increase in the quantity of reserves has been accompanied by a reduction in the

variability of the spread between the policy rate (the federal funds rate) and its target, as shown in

Figure 1.

This paper develops an analytically tractable framework for studying the optimal supply of

central bank reserves when demand is uncertain and nonlinear.1 It builds on the theoretical and

empirical evidence highlighting the nonlinearity of the demand for reserves and the multiple

sources of uncertainty around it (Poole, 1968; Afonso and Lagos, 2015; Afonso et al., 2021; Bigio and

Sannikov, 2021; Copeland et al., 2021; Afonso et al., 2022a; Afonso et al., 2022b; Bianchi and Bigio,

2022; Yang, 2022; d’Avernas et al., 2023; Goldstein et al., 2023; and Lagos and Navarro, 2023).

The novel contribution of this paper is to determine the optimal supply of reserves for the purpose

of interest rate control when demand is uncertain. The literature has so far focused on deriving

the supply of reserves that implies the optimal spread between the policy and administered rate,

assuming the demand curve is known. A useful theoretical benchmark is based on the Friedman

rule, which minimizes the cost of holding money by setting the interest rate to zero. Applying the

same logic to reserves, the central bank should provide sufficient reserves such that the opportunity

cost of holding reserves is zero; that is, the market rate at which banks trade their reserves with

each other should coincide with the interest rate on reserves paid by the central bank. In the

1We do not include state-contingent sources of reserves supply such as fixed-rate lending facilities in our model. We
discuss their potential effects on our results in Section 6.
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presence of market frictions or other distortions, however, the optimal spread between the market

and administered rates may differ from zero.2 In this paper, we treat the optimal interest rate

spread as a parameter and derive the implications of demand uncertainty for the optimal provision

of reserves when the central bank aims to minimize deviations from such target.

Specifically, we study a static Bayesian optimization problem given the banking system’s demand

function for reserves. We abstract from transition dynamics and the effects of asset purchases for

monetary policy purposes on the economy.3 In principle, uncertainty about the demand curve

may be due to both stochastic shocks and estimation uncertainty. The analysis provides a full

characterization of the optimal supply of central bank reserves and associated market equilibrium.

It finds that demand uncertainty is a key determinant of the optimal reserves supply. Greater

uncertainty about the demand for reserves unambiguously raises the optimal supply.

The central bank faces a demand curve for reserves that links the quantity of reserves to the

spread between the policy rate implied by the market and the interest rate on reserves (i.e., the

price). This demand is the result of a tradeoff: banks receive benefits from holding reserves but also

incur costs; since the net benefits decline with the quantity of reserves held, the curve is nonlinear

and has a lower asymptote. We represent the resulting demand curve as a piecewise linear function

characterized by three regions.4 For a scarce supply of reserves, the slope of the demand curve is

steep, i.e., price elastic: a small change in the quantity of reserves results in a meaningful change

in the spread. At a sufficiently large, or ample, supply of reserves, the price-elasticity declines, i.e.,

the demand curve flattens but is still downward sloped. At an even larger, or abundant, supply of

reserves, demand becomes completely price inelastic, i.e., the demand curve is flat.

The central bank is assumed to target a level of the spread and a quantity of reserves consistent

2For models with general forms of money, see Schmitt-Grohe and Uribe (2010) and references therein, Weiss (1980),
Freeman (1993), Smith (2002), Bhattacharya et al. (2005), Williamson (2012), and Brunnermeier and Sannikov (2016).
For models focusing on reserves supply, see Goodfriend (2002), Keister et al. (2008), Cúrdia and Woodford (2011), Stein
(2012), Kashyap and Stein (2012), Bigio and Sannikov (2021), Benigno and Benigno (2022), and Vissing-Jorgensen (2023).

3For recent references studying how the outstanding supply of reserves affects banks’ behavior, see Diamond et al.
(2020), Acharya and Rajan (2022), and Acharya et al. (2023).

4We model the demand for reserves only as a function of the interest rate spread; in principle, it could also increase
with the spread variability. This modification would impede the derivation of analytic results and is therefore beyond
the scope of the current paper. Such a modification, however, would likely reinforce our main result, i.e., that demand
uncertainty increases the optimal supply of reserves.
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with ample supply. The choice of reserves minimizes a quadratic loss function over expected

deviations from the target spread and deviations from the target level of reserves. The central bank

chooses reserves under uncertainty about demand. After the quantity of reserves has been chosen,

three types of shocks affect the realized spread. There is uncertainty about the location of the kink

between the ample and abundant regions (i.e., satiation point), about the minimum spread (i.e., the

floor of the demand curve), and about the slope of the demand curve in the ample region.

We start by assuming only two regions in the demand curve, ample and abundant. We first

solve for the optimal quantity of reserves absent uncertainty. We then analyze the optimal supply

of reserves under uncertainty. Uncertainty about the location of the kink in the demand curve and

uncertainty about its slope imply that certainty equivalence does not apply, and that the optimal

supply of reserves depends on the degree of uncertainty. We analytically derive the optimal supply,

associated comparative statics, and the equilibrium distribution of the interest rate spread. We then

extend the model to include a third, scarcity region, where the demand for reserves is highly price

elastic.

Our analysis yields five main findings. First, uncertainty about the location of the kink between

ample and abundant reserves unambiguously increases the optimal supply of reserves. This result

is due to the truncation of the effects of these shocks over the flat part of the demand curve. Second,

uncertainty about the slope of the demand further increases the optimal supply of reserves. Third,

even though the underlying demand is piecewise linear, the mean spread is a smooth, declining

function of the level of reserves. Fourth, an increase in uncertainty may decrease or increase the

optimal mean spread. Fifth, for a sufficiently high degree of uncertainty, it is optimal to supply a

level reserves that exceeds the expected kink in the demand curve; that is, it is optimal to supply

reserves that are on average in the abundant reserves region, even though the central bank targets

the ample region. These results are robust to adding a third, scarce reserves, region and to assuming

that the central bank’s targets for the spread and reserves are in the abundant reserves region.
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2 Model

We conduct our analysis with a simple model of the demand for central bank reserves that captures

the key features implied by theory (e.g., Poole, 1968, Afonso and Lagos, 2015, Bianchi and Bigio,

2022). We represent the nonlinear nature of demand using a piecewise-linear function of the spread

between the rate at which banks trade their reserves in the federal funds market and the interest

rate paid on reserve balances by the central bank. The demand for reserves is price sensitive in

the ample reserves region and price insensitive in the abundant reserves region. In Section 5, we

introduce a third region of scarce reserves, in which the demand for reserves is more price sensitive

than in the ample reserves region. We incorporate three sources of uncertainty about the demand

for reserves highlighted in the empirical evidence of Afonso et al. (2022b).

2.1 Demand for Reserves

The interest rate spread, 𝑆, between the market rate and the interest rate on reserve balances is

assumed to depend on the level of reserves, 𝑋, according to the piecewise-linear demand function:

𝑆 =


�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋 − �̄� − 𝜖) if 𝑋 < �̄� + 𝜖,

�̄� + 𝜈 else,
(1)

where �̄� + 𝜖 denotes the level of reserves above which the demand for reserves becomes flat

(abundant reserves), 𝛼 + 𝜂 is the steepness of the demand curve if 𝑋 < �̄� + 𝜖 (ample reserves), and

�̄� + 𝜈 is the spread if reserves are abundant (floor of the demand curve). We assume that �̄�, 𝛼 > 0,

and �̄� are known to the central bank, whereas 𝜖, 𝜂, and 𝜈 are uncertain. Absent uncertainty, the

demand equation (1) is shown by the solid black lines in Figure 2.

Figure 2 also shows how the three elements of uncertainty affect the demand for reserves.

Each source of uncertainty is represented by a mean-zero shock with finite second moments that

is uncorrelated with the other shocks. Specifically, the shock 𝜖 represents uncertainty about the

location of the kink in the demand curve; it has a probability density function 𝑔(·), cumulative
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distribution function 𝐺(·), and variance 𝜎2
𝜖.5 These horizontal shocks can also be interpreted as

shocks to the supply of reserves, 𝑋, caused by factors outside the control of the central bank (e.g.,

the Treasury general account).

The shock 𝜈, with variance 𝜎2
𝜈, reflects uncertainty about the level of the minimum spread and

affects the spread equally along the demand curve. That is, 𝜖 corresponds to a horizontal shift in the

reserve demand curve, while 𝜈 represents a vertical shift. The shock 𝜂, with variance 𝜎2
𝜂, represents

uncertainty about the slope of the demand curve in the downward-sloping (ample reserves) region.

To simplify our notation, in (1), we assume that the slope of the demand curve is zero in the

abundant reserves region; our analysis and results, however, carry over if demand is price sensitive

when reserves are abundant, as long as the mean slope in this region is smaller in magnitude than

that in the ample reserves region, 𝛼.

2.2 Model Properties

We start with a description of key equilibrium properties of the model. The proofs build on methods

developed in Bok et al. (2023) and are contained in the mathematical appendix.

For a given level of reserves, 𝑋, the cutoff value of the shock 𝜖 such that reserves become

abundant, denoted by �̄�(𝑋), is given by:

�̄�(𝑋) = 𝑋 − �̄�.

For a given value of 𝑋, the probability of being in the flat part of the demand curve is given by:

Prob
(
𝜖 < �̄�(𝑋)

)
= 𝐺

(
�̄�(𝑋)

)
,

where the derivative of this probability with respect to 𝑋 is equal to 𝑔(�̄�(𝑋)). To simplify notation,

for the remainder of the paper, we suppress the argument in parenthesis and use �̄� to indicate �̄�(𝑋).

In deriving model moments, it is useful to define two functions related to the cumulative

5We assume that 𝑔(·) is continuous and that lim𝜖→∞ 𝜖2𝑔(𝜖) = 0.
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distribution function 𝐺(·). First, define the super-cumulative distribution function, 𝒢(·) ≥ 0, as

𝒢(𝑎) =
∫ 𝑎

−∞
𝐺(𝜖)𝑑𝜖.

Since 𝜖 has zero mean, 𝒢(𝑎) ≥ 𝑎 for all 𝑎. Second, define the super-super cumulative distribution

function, G(·) ≥ 0, as:

G(𝑎) =
∫ 𝑎

−∞
𝒢(𝜖)𝑑𝜖.

Note that G′(𝑎) = 𝒢(𝑎) and 𝒢
′(𝑎) = 𝐺(𝑎).

Result 1 (Mean and Variance of Spread)

For any given value of 𝑋, joint uncertainty about 𝜖, 𝜈, and 𝜂 implies that:

1. the mean spread under uncertainty, E𝑆, exceeds the spread absent uncertainty and is given by:

E𝑆 = �̄� + 𝛼
(
𝒢(�̄�) − �̄�

)
, (2)

which decreases with the level of reserves because

𝑑E𝑆

𝑑𝑋
= 𝛼 (𝐺(�̄�) − 1) ≤ 0;

2. the variance of the spread, Var[𝑆] = E(𝑆 − E𝑆)2, is given by:

Var[𝑆] = 𝜎2
𝜈 − 𝛼2

(
𝒢(�̄�) − �̄�

)2
+ (𝛼2 + 𝜎2

𝜂)
(
�̄�2 + 𝜎2

𝜖 − 2G(�̄�)
)
, (3)

which decreases with the level of reserves because

𝑑Var[𝑆]
𝑑𝑋

= −2
(
𝛼2𝐺(�̄�) + 𝜎2

𝜂

) (
𝒢(�̄�) − �̄�

)
≤ 0;

7



3. in the special case of no uncertainty about 𝜖, the variance of the spread is given by:

Var[𝑆] =


𝜎2
𝜈 + 𝜎2

𝜂 �̄�
2 if 𝑋 < �̄� ,

𝜎2
𝜈 else,

which decreases with the level of reserves for 𝑋 < �̄�.

Uncertainty about the vertical location of the demand curve (𝜈) and uncertainty about the slope

of the demand curve (𝜂) have no effect on the mean spread for a given supply of reserves. For a given

level of reserves, the mean spread is greater than or equal to the spread absent uncertainty due to the

truncation of the shock 𝜖 along the flat portion of the reserve demand curve. This truncation of the

distribution of 𝜖 smooths the relationships between the level of reserves and the mean and variance

of the spread, despite the underlying piecewise-linear model. These relationships are illustrated in

Figures 3 and 4, which are constructed assuming that 𝜖 and 𝜂 follow Gaussian distributions (the

variance of 𝜈 is set to zero). Figure 3 plots the spread as a function of reserves absent uncertainty

about 𝜖 (the black line) and the expected spread as a function of reserves with uncertainty about 𝜖

(the red line). Figure 4 plots the corresponding relationships between the level of reserves and the

standard deviation of the spread, with and without uncertainty about 𝜖 or 𝜂.

3 The Optimal Supply of Reserves

In this section, we analytically derive the optimal supply of reserves by the central bank given the

demand equation (1). We begin with the deterministic version, in which the three shocks are set to

zero. We then derive the optimal supply of reserves incorporating the three shocks.

3.1 The Central Bank Optimization Problem

Consistent with the theoretical considerations discussed above, we assume that the central bank

aims to achieve a target spread, �̂�. In addition, we assume that it pays a penalty if the quantity of
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reserves deviates from a specified level, �̂�. In the stochastic problem, the central bank chooses the

supply of reserves, 𝑋, before the realization of the three shocks.

We assume a quadratic objective function, denoted by ℒ. Specifically, the central bank aims to

minimize the expected value of a linear combination of the squared difference between the realized

spread and the target spread and the squared difference between the level of reserves and their

target level, subject to the piecewise-linear demand for reserves in equation (1); that is,

ℒ = min
𝑋

1
2E

[
(𝑆 − �̂�)2 + 𝜆(𝑋 − �̂�)2

]
, (4)

where 𝜆 ≥ 0 is the relative weight given to deviations from the reserves target �̂�. This problem is

mathematically identical to:

ℒ = min
𝑋

1
2

(
(E𝑆 − �̂�)2 + Var[𝑆] + 𝜆(𝑋 − �̂�)2

)
, (5)

where the loss function is written in terms of a linear combination of the squared difference between

the mean spread and target spread, the variance of the spread, and the squared difference between

the level of reserves and their target level.

As discussed above, the central bank’s target level of the spread �̂� is influenced by a number

of factors, including monetary policy objectives and financial market frictions. The choice of the

target reserve level �̂� reflects central bank’s considerations that are not directly related to the

control of interest rates, such as the central bank’s footprint in the financial system and possible

disintermediation of the banking system, which could lead to a less efficient allocation of resources

and inhibit market functioning.6 If it is costly for the central bank to operate a large balance sheet

for reasons unrelated to interest rate control, the central bank may find optimal to set the target level

of reserves below the satiation point, i.e., �̂� < �̄�.

In the following, we assume that, absent uncertainty, the target spread and target level of reserves

are both in the ample reserves region. Specifically, we assume �̂� > �̄� and �̂� < �̄�. Our analysis

generalizes to the less-interesting case in which the target levels lie in the abundant reserves region.

6See Borio (2023).
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In principle, the value of �̂� could be higher or lower than that implied by �̂� (absent uncertainty).

3.2 Optimal Supply of Reserves absent Uncertainty

We first analyze the optimal supply of reserves in the deterministic version of the model that

excludes the three shocks. Substituting the demand for reserves in the ample reserves region into

the first-order condition yields the optimal level of reserves absent uncertainty, 𝑋∗:

𝑋∗ = �̄� − 1
𝛼2 + 𝜆

(
𝛼(�̂� − �̄�) + 𝜆(�̄� − �̂�)

)
< �̄�.

The optimal level of reserves absent uncertainty increases less than one-for-one with the target level

of reserves �̂� and decreases with the target spread �̂�.

The associated second-order condition for a minimum is 𝛼2+𝜆 > 0, which is true by assumption.

The optimal level of the spread absent uncertainty, 𝑆∗, is given by:

𝑆∗ = �̂� − 𝜆

𝛼2 + 𝜆

(
(�̂� − �̄�) − 𝛼(�̄� − �̂�)

)
.

The spread under the optimal supply of reserves absent uncertainty equals the target spread if𝜆 = 0

and increases less than one-for-one with the target spread if 𝜆 > 0.

3.3 Optimal Supply of Reserves under Uncertainty

We now turn to the derivation of the optimal supply of reserves under uncertainty. Throughout we

assume that the degree of uncertainty is fixed and there is no ability to “learn” from past behavior.

We first consider the conditions for the optimal supply of reserves and then analyze its properties.

After substituting the demand model (1) into the optimization problem (4), the central bank’s

objective function is given by:

min
𝑋

1
2

{ (
(�̄� − �̂�)2 + 𝜎2

𝜈

)
𝐺(�̄�) + E

[(
�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋 − �̄� − 𝜖) − �̂�

)2 ���𝜖 > �̄�

]
+ 𝜆(𝑋 − �̂�)2

}
.
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Note that certainty equivalence does not hold due to the multiplicative uncertainty associated with

the slope parameter 𝛼 and because the effect of realized horizontal shocks, 𝜖, depends on the level

of reserves 𝑋 (via the truncation of their distribution).

Result 2 (Optimal Level of Reserves and Expected Spread)

The first-order condition yields the following equation for the optimal level of reserves, 𝑋∗∗:

𝑋∗∗ = �̄� + 1
𝛼2 + 𝜎2

𝜂 + 𝜆

(
𝛼
(
𝐺(�̄�) − 1

)
(�̂� − �̄�) + (𝛼2 + 𝜎2

𝜂)𝒢(�̄�) − 𝜆(�̄� − �̂�)
)
, (6)

which implies the inequality 𝑋∗∗ − �̄� < 𝒢(�̄�).

The corresponding second-order condition is given by

(𝛼2 + 𝜎2
𝜂)

(
1 − 𝐺(�̄�)

)
− 𝛼(�̂� − �̄�)𝑔(�̄�) + 𝜆 > 0.

Appendices A.1 and A.2 derive these results.

Result 2 lays out the necessary and sufficient conditions for the existence of local minima. Note

that vertical shocks to the demand for reserves, 𝜈, do not affect the optimal choice of 𝑋∗∗ because

vertical shocks simply add to the variance of the spread without affecting its mean and do not

change how the supply of reserves affects the spread.

Unlike the case of no uncertainty, the first-order condition is an implicit function of 𝑋∗∗ that may

have multiple solutions, some of which represent local minima and others local maxima depending

on the sign of the second-order condition. That said, since the loss function is continuous and

monotonically increases as reserves go to infinity, there exists one global minimum. In our analysis,

we rely on the second-order condition holding at the global minimum, while recognizing that there

may be other local minima.

The key results regarding the effects of uncertainty on the optimal supply of reserves are sum-

marized in Result 3.
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Result 3 (Uncertainty Increases Optimal Supply of Reserves)

The optimal supply of reserves under uncertainty is characterized as follows:

1. In the case of joint uncertainty about 𝜖, 𝜈, and 𝜂, the optimal level of reserves, 𝑋∗∗, is given by:

𝑋∗∗ = 𝑋∗ +
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝒢(�̄�) + 𝛼

𝛼2 + 𝜆
(�̂� − �̄�)𝐺(�̄�)

+
𝜎2
𝜂

(𝛼2 + 𝜆)(𝛼2 + 𝜎2
𝜂 + 𝜆)

(
𝛼 (1 − 𝐺(�̄�)) (�̂� − �̄�) + 𝜆(�̄� − �̂�)

)
≥ 𝑋∗,

where the terms on the right hand side of the equation are positive by the assumption that the target

spread, �̂�, exceeds the floor spread, �̄�, and the target value of reserves is below the kink between the

ample and abundant reserves regions (�̂� < �̄�);

2. and the associated optimal mean spread under uncertainty, E𝑆∗∗, is given by:

E𝑆∗∗ = 𝑆∗ + 𝛼(𝒢(�̄�) + 𝑋∗ − 𝑋∗∗) ≶ 𝑆∗;

see Appendix A.3 for details.

3. In the special case of no uncertainty about 𝜖, optimal reserves, denoted by 𝑋∗
𝜂, and the associated optimal

means spread, 𝑆∗
𝜂, are given by:

𝑋∗
𝜂 = �̄� − 1

𝛼2 + 𝜎2
𝜂 + 𝜆

(
𝛼(�̂� − �̄�) + 𝜆(�̄� − �̂�)

)
≥ 𝑋∗,

𝑆∗
𝜂 = �̂� − 𝜆

𝛼2 + 𝜎2
𝜂 + 𝜆

(
(�̂� − �̄�) − 𝛼(�̄� − �̂�)

)
.

Uncertainty associated with horizontal shifts in the demand increases the optimal supply of

reserves because the kink in the demand curve truncates the effect of reserves on the spread. The

larger supply has two benefits: it reduces the deviation from the target spread caused by the

positive direct effect of uncertainty on the mean spread, and it reduces the overall variability of the

spread (see equation (5)). Uncertainty about the slope of the demand curve in the ample reserves
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region increases the optimal level of reserves because the magnitude of the effect of this source

of uncertainty depends on the distance between 𝑋 and �̄�: the effect increases as reserves decline

below �̄�, whereas it is zero if reserves are above �̄�. The logic is the same as in Brainard (1967),

where multiplicative uncertainty calls for attenuation of the response of the policy instrument.

Uncertainty may increase or decrease the optimal mean spread due to two opposing effects: the

direct positive effect of higher uncertainty (for any given value of reserves) and the indirect effect of

a higher optimal level of reserves. In the special case of 𝜆 = 𝜎2
𝜂 = 0, the optimal supply of reserves

fully offsets the direct effect of uncertainty on the mean spread, and E𝑆∗∗ < 𝑆∗. Figure 3 illustrates

the optimal choice of reserves. The black square denotes the optimal choice of reserves and the

corresponding spread absent uncertainty. The red and blue squares show the optimal choices when

there is uncertainty about the kink (𝜖 shocks) and the slope (𝜂 shocks). The green square represents

the optimal choice for both sources of uncertainty combined. Uncertainty about the floor of the

demand curve (𝜈 shocks) does not affect the mean spread or the optimal reserve supply.

3.4 Factors Affecting the Optimal Supply of Reserves

The optimal supply of reserves in equation (6) reflects the key parameters of the model as well as the

uncertainty around the demand for reserves. In this section, we explore how the optimal reserve

supply changes in response to shifts in some of these parameters.

A direct implication of equation (6) is that an equally-sized joint increase in �̄� and �̂� yields a

one-for-one increase in the optimal supply of reserves. Similarly, an equally-sized joint increase

in �̄� and �̂� has no effect on the optimal supply of reserves. More generally, the main findings

regarding the sensitivity of the optimal supply of reserves to model parameters are summarized in

the following result.
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Result 4 (Comparative Statics for Optimal Reserves)

In the presence of joint uncertainty about 𝜖, 𝜈, and 𝜂, the following comparative statics are obtained, where

Γ > 0 denotes the second-order condition:

1. optimal reserves are increasing in the target level of reserves, �̂�:

𝑑𝑋∗∗

𝑑�̂�
=

𝜆
Γ
≥ 0;

2. optimal reserves may be increasing or decreasing in the mean level of reserves at the kink, �̄�:

𝑑𝑋∗∗

𝑑�̄�
=

Γ − 𝜆
Γ

;

3. optimal reserves are decreasing in the target level of the spread, �̂�:

𝑑𝑋∗∗

𝑑�̂�
= −𝛼(1 − 𝐺(�̄�))

Γ
≤ 0;

4. optimal reserves are increasing in the uncertainty about the slope of the demand curve in the ample

reserves region:
𝑑𝑋∗∗

𝑑𝜎2
𝜂

=
𝒢(�̄�) − (𝑋∗∗ − �̄�)

Γ
≥ 0.

Perhaps not surprisingly, the optimal level of reserves is increasing in the target level of reserves

(if 𝜆 > 0) and decreasing in the target spread. Interestingly, the sign of the relationship between the

optimal level of reserves and the location of the kink in the demand curve is pinned down by the

sign of Γ − 𝜆. In the special case of 𝜆 = 0, the optimal supply of reserves moves one-for-one with

the location of the kink in the demand curve. Finally, greater uncertainty about the slope of the

demand curve in the ample reserves region increases the optimal supply of reserves. Intuitively,

greater uncertainty about the slope raises the odds of higher equilibrium spreads. Since spreads

are asymmetrically distributed with a floor in the abundant reserves region, the central bank can

reduce its average loss by supplying more reserves.
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3.5 Can it be Optimal to Supply Abundant Reserves?

We assume that the central bank targets a spread and a level of reserves in the ample reserves region

(�̂� < �̄� and �̂� > �̄�). We show that, absent uncertainty, the optimal reserves supply is indeed ample,

𝑋∗ < �̄� . Under uncertainty, however, the optimal level can exceed �̄� if the degree of uncertainty is

sufficiently large relative to the penalty on deviations from the target quantity of reserves.

Result 5 (Optimality of Abundant Reserves)

It is optimal to supply an abundant amount of reserves greater than �̄� if:

−𝛼
(
1 − 𝐺(�̄�)

)
(�̂� − �̄�) + (𝛼2 + 𝜎2

𝜂)𝒢(�̄�) − 𝜆(�̄� − �̂�) > 0.

Note that a strong penalty on the quantity of reserves (𝜆) raises the hurdle to meet this condition.

4 The Distribution of Spreads: Theory and Evidence

The model in Section 2 replicates salient features of observed spreads in the federal funds market.

The critical assumption of the model is that, when setting the amount of reserves, the policymaker

faces a nonlinear demand curve with uncertain parameters. This uncertainty arises from variation

in the location of the kink, the slope, and the floor of the demand curve.

The Federal Reserve has implemented monetary policy with different frameworks. Prior to

2009, it operated a scarce reserves regime in which control of the federal funds rate was maintained

through daily changes in the supply of reserves provided to the market. Since 2009, it has aimed

to operate an ample reserves regime in which changes in the administered rates control the federal

funds rate by changing banks’ opportunity costs of lending in the federal funds market. A key

distinguishing feature of these two regimes is the level of reserves relative to the size of the banking

system: reserves increased from 0.1% of bank assets on average during 2006:Q1-2008:Q1 to 12.3%

during 2008:Q2-2019:Q4. After the COVID-19 pandemic (2020:Q3-2023:Q2), this ratio increased to

15.3%.
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In the presence of horizontal shocks to the demand for reserves (𝜖), our model predicts a

nonlinear relationship between the level of reserves and the probability that the interest rate spread

does not change from one day to the next: this probability is strictly smaller than one if reserves

are ample but converges to one as reserves increase and become abundant. Similarly, shocks to the

slope of the demand curve (𝜂) would have no effect on the spread in the abundant reserves region

but would increase the likelihood of daily changes in the spread as reserves decline inside the ample

region. In contrast, if only vertical shocks are present (𝜈), this probability should be the same at all

levels of reserves, even in the flat part of the demand function.

The evidence supports the basic assumptions of our model of a nonlinear demand for reserves

and the importance of high-frequency horizontal shifts in the demand for reserves. Figure 1 shows

the percentage of days within a quarter on which the daily change in the spread between the federal

funds rate and a measure of the target rate is zero, from 2006 to 2023: the percentage strongly

increases with the amount of reserves in the banking system, as measured by the reserves-to-assets

ratio, and flattens around 100% when reserve are sufficiently large. As the supply of reserves

increases, the interest rate spread remains more stable. This conclusion is also supported by Afonso

et al. (2022b), who find that the sensitivity of the interest rate spread to shocks is negatively related

to the quantity of reserves as long as reserves are below a given threshold.

5 Optimal Reserves Supply Including a Scarce Reserves Region

So far, we have considered the optimal supply of reserves in the presence of ample and abundant

reserves regions. The model can be extended to the case where the supply of reserves can be below

the ample reserves region. Such an extension can consider two aspects of the demand curve at

low levels of reserves. First, at lower reserves levels, the demand curve can become steeper than

in the ample reserves region, reflecting the increased scarcity value of reserves; we refer to this as

the ‘’scarce reserves” region. Second, the presence of central bank fixed-rate lending facilities, such

as the discount window, may truncate the demand function from above, thus limiting the effects of

shocks on the spread.
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In this section, we focus on the first aspect and extend our model to incorporate a scarce reserves

region and show its effects on the optimal supply of reserves. Specifically, we allow for a higher

degree of nonlinearity in the demand curve by introducing a second kink when reserves reach

lower levels, 𝑋 < �̄�2 < �̄�1. In this scarce reserves region, the demand curve becomes steeper. The

resulting demand for reserves is given by:

𝑆 =


�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋 − �̄�1 − 𝜖) − (𝛽 + 𝜑)(𝑋 − �̄�2 − 𝜖) if 𝜖 > 𝑋 − �̄�2,

�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋 − �̄�1 − 𝜖) if 𝑋 − �̄�2 ≥ 𝜖 > 𝑋 − �̄�1,

�̄� + 𝜈 if 𝜖 < 𝑋 − �̄�1,

(7)

where 𝛽 ≥ 0 is the additional slope in the scarce reserves region relative to the ample reserves region

(whose slope is 𝛼). 𝜑 is a mean-zero shock with variance 𝜎2
𝜑 that represents uncertainty about the

parameter 𝛽 and is independent of the other shocks. In the special case of 𝛽 = 0 and 𝜎2
𝜑 = 0, this

setup is identical to the two-region model described above. As before, we assume that the optimal

supply of reserves absent uncertainty lies in the ample reserves region (�̄�2 < 𝑋∗ < �̄�1) by imposing

that the target spread and target level of reserves are in the ample region. This condition is satisfied

if 0 < 𝛼(�̂� − �̄�) + 𝜆(�̄�1 + �̂�) < (𝛼2 + 𝜆)(�̄�1 − �̄�2).

In the absence of uncertainty, the equation for the optimal reserves is the same as in the two-

region model, with �̄�1 replacing �̄�. With uncertainty, the first-order condition for the optimal

supply of reserves, 𝑋∗∗∗, leads to

𝑋∗∗∗ =
𝛼2 + 𝜎2

𝜂 + 𝜆

((𝛼 + 𝛽)2 + 𝜎2
𝜂 + 𝜎2

𝜑) + 𝜆
𝑋∗∗+

+
𝛽(1 − 𝐺(�̄�2))

((𝛼 + 𝛽)2 + 𝜎2
𝜂 + 𝜎2

𝜑) + 𝜆
(�̄� + 𝛼(�̄�1 − �̄�2) − �̂�) +

2𝛼𝛽 + 𝛽2 + 𝜎2
𝜑

((𝛼 + 𝛽)2 + 𝜎2
𝜂 + 𝜎2

𝜑) + 𝜆
(�̄�2 +𝒢(�̄�2)),

where �̄�1 = �̄�(�̄�1) and �̄�2 = �̄�(�̄�2). Note that �̄�+𝛼(�̄�1−�̄�2) is the spread at 𝑋 = �̄�2 in the deterministic

version of the model and is greater than �̂� by assumption. After rearranging terms, we obtain the

following result.
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Result 6 (Higher Optimal Reserves in the Three-Region Model)

The existence of the scarce reserves region increases the optimal reserves supply:

𝑋∗∗∗ ≥ 𝑋∗∗ +
𝛽(1 − 𝐺(�̄�2))
𝛼2 + 𝜎2

𝜂 + 𝜆

(
�̄� + 𝛼(�̄�1 − �̄�2) − �̂�

)
.

Appendix C contains details on the derivation. Under the assumption that the optimal supply of

reserves absent uncertainty lies in the ample reserves region, the second term on the right-hand side

is clearly positive. As a result, the addition of a third, scarce reserves region increases the optimal

supply of reserves relative to the two-region model under uncertainty, reinforcing our results about

the effects of uncertainty on the optimal supply of reserves. An implication is that adding a scarce

reserves region relaxes the condition for optimal reserves to lie in the abundant reserves region (see

Result 5).

Finally, the presence of central bank fixed-rate lending facilities truncates the demand function

from above, since banks can in principle borrow from such facilities instead of borrowing in the

market at a higher rate.7 Incorporating a state-contingent supply of reserves such as a lending

facility is beyond the scope of this paper. Intuitively, the resulting upper truncation of the demand

curve would somewhat reduce the effects of uncertainty on the optimal supply of reserves derived

in this paper, with the magnitude of the effect depending on the probability distribution of facility’s

take-up.

6 Conclusion

This paper analyzes the optimal supply of central bank reserves under uncertainty about the demand

for reserves. Relative to the case of no uncertainty, both uncertainty about the level of reserves that

satiates demand and uncertainty about the slope of the demand curve below the satiation point

increase the optimal supply of reserves. With a sufficiently high degree of uncertainty, it is optimal

to supply a level of reserves that exceeds the mean value of the satiation point even though the

7In the presence of market frictions or stigma, the maximum rate may be above the offering rate (Armantier et al.,
2015) or only partially effective at limiting spikes in spreads.
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central bank targets the region below demand satiation; that is, the optimal supply of reserves lies

in the abundant reserves region even if the central bank targets ample reserves.

A key advantage of this analysis is that it is analytically tractable, and we are able to derive

closed-form solutions. Potential extensions of the model include adding intertemporal aspects

of the supply and demand for reserves, structural changes, and the role of experimentation and

learning in the design of optimal policy. In addition, this model provides a structure that can be

empirically implemented, allowing for the estimation of the effects of uncertainty on the supply for

reserves.
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Appendix

A General Problem

The central bank minimization problem under uncertainty (4) can be written as

min
𝑋

{ ∫ �̄�

−∞

∫ ∞

−∞
(�̄� + 𝜈 − �̂�)2 𝑓 (𝜈)𝑔(𝜖)𝑑𝜈𝑑𝜖

+
∫ ∞

−∞

∫ ∞

�̄�

∫ ∞

−∞

(
�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋 − �̄� − 𝜖) − �̂�

)2
𝑓 (𝜈)𝑔(𝜖)ℎ(𝜂)𝑑𝜈𝑑𝜖𝑑𝜂 + 𝜆(𝑋 − �̂�)2

}
,

where 𝑓 , 𝑔, and ℎ are the probability density functions of the shocks 𝜈, 𝜖, and 𝜂, respectively. These

density functions can have either finite or infinite support.

Then, the first-order condition is∫ ∞

−∞

∫ ∞

−∞
(�̄� + 𝜈 − �̂�)2 𝑓 (𝜈)ℎ(𝜂)𝑑𝜈𝑑𝜂𝑔(�̄�) 𝑑�̄�

𝑑𝑋

−
∫ ∞

−∞

∫ ∞

−∞

(
�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋∗∗ − �̄� − �̄�) − �̂�

)2
𝑓 (𝜈)ℎ(𝜂)𝑑𝜈𝑑𝜂𝑔(�̄�) 𝑑�̄�

𝑑𝑋

+
∫ ∞

−∞

∫ ∞

�̄�

∫ ∞

−∞
−(𝛼 + 𝜂)(�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋∗∗ − �̄� − 𝜖) − �̂�) 𝑓 (𝜈)𝑔(𝜖)ℎ(𝜂)𝑑𝜈𝑑𝜖𝑑𝜂 + 𝜆(𝑋∗∗ − �̂�) = 0,

where the first two terms cancel out when substituting in �̄� = 𝑋∗∗ − �̄�. As a result, the first-order

condition can be simplified to∫ ∞

−∞

∫ ∞

�̄�

∫ ∞

−∞
−(𝛼 + 𝜂)(�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋∗∗ − �̄� − 𝜖) − �̂�) 𝑓 (𝜈)𝑔(𝜖)ℎ(𝜂)𝑑𝜈𝑑𝜖𝑑𝜂+𝜆(𝑋∗∗ − �̂�) = 0. (A.1)

A.1 Optimal Supply of Reserves

Before solving for the optimal level of reserves, we first derive a few useful results. The cumulative

distribution function is defined as ∫ �̄�

−∞
𝑔(𝜖)𝑑𝜖 = 𝐺(�̄�),
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which we use in computing the following integral∫ �̄�

−∞
𝜖𝑔(𝜖)𝑑𝜖 =

∫ �̄�

−∞
�̄�𝑔(𝜖)𝑑𝜖 −

∫ �̄�

−∞
(�̄� − 𝜖)𝑔(𝜖)𝑑𝜖 = �̄�𝐺(�̄�) − [(�̄� − 𝜖)𝐺(𝜖)]�̄�−∞ −

∫ �̄�

−∞
𝐺(𝜖)𝑑𝜖

= �̄�𝐺(�̄�) −𝒢(�̄�).
(A.2)

Furthermore, since the shocks are independent and have zero mean,∫ ∞

−∞

∫ ∞

−∞
(𝛼 + 𝜂)𝜈 𝑓 (𝜈)ℎ(𝜂)𝑑𝜈𝑑𝜂 = 0

and ∫ ∞

−∞

∫ ∞

�̄�
(𝛼 + 𝜂)2𝜖𝑔(𝜖)ℎ(𝜂)𝑑𝜈𝑑𝜂 =

∫ ∞

−∞
(𝛼 + 𝜂)2ℎ(𝜂)𝑑𝜂

∫ ∞

�̄�
𝜖𝑔(𝜖)𝑑𝜈

=

∫ ∞

−∞
(𝛼 + 𝜂)2ℎ(𝜂)𝑑𝜂

(∫ ∞

−∞
𝜖𝑔(𝜖)𝑑𝜈 −

∫ �̄�

−∞
𝜖𝑔(𝜖)𝑑𝜈

)
= −(𝛼2 + 𝜎2

𝜂)(�̄�𝐺(�̄�) −𝒢(�̄�)).

We can use these results to simplify the first-order condition in equation (A.1) to

0 =

∫ ∞

−∞

∫ ∞

�̄�
−(𝛼 + 𝜂)(�̄� − (𝛼 + 𝜂)(𝑋∗∗ − �̄� − 𝜖) − �̂�)𝑔(𝜖)ℎ(𝜂)𝑑𝜖𝑑𝜂 + 𝜆(𝑋∗∗ − �̂�)

= (1 − 𝐺(�̄�))
(
−𝛼(�̄� − �̂�) + (𝛼2 + 𝜎2

𝜂)(𝑋∗∗ − �̄�)
)
−

∫ ∞

−∞

∫ ∞

�̄�
(𝛼 + 𝜂)2𝜖𝑔(𝜖)ℎ(𝜂)𝑑𝜖𝑑𝜂 + 𝜆(𝑋∗∗ − �̂�)

= (1 − 𝐺(�̄�))
(
−𝛼(�̄� − �̂�) + (𝛼2 + 𝜎2

𝜂)(𝑋∗∗ − �̄�)
)
+ (𝛼2 + 𝜎2

𝜂)(�̄�𝐺(�̄�) −𝒢(�̄�)) + 𝜆(𝑋∗∗ − �̂�).

Using the definition �̄� = 𝑋∗∗ − �̄�, we get

−𝛼(1 − 𝐺(�̄�))(�̄� − �̂�) + (𝛼2 + 𝜎2
𝜂 + 𝜆)(𝑋∗∗ − �̄�) − (𝛼2 + 𝜎2

𝜂)𝒢(�̄�) + 𝜆(�̄� − �̂�) = 0,

which we can rearrange as

𝑋∗∗ = �̄� − 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

(1 − 𝐺(�̄�))(�̂� − �̄�) − 𝜆

𝛼2 + 𝜎2
𝜂 + 𝜆

(�̄� − �̂�) +
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝒢(�̄�),
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or alternatively as

𝑋∗∗ = 𝑋∗ + 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

𝐺(�̄�)(�̂� − �̄�) +
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝒢(�̄�). (A.3)

A.2 Second-order condition

Differentiating the left-hand side of the first-order condition in equation (A.1) yields

𝑑

𝑑𝑋

∫ ∞

−∞

∫ ∞

�̄�

∫ ∞

−∞
−(𝛼 + 𝜂)(�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋 − �̄� − 𝜖) − �̂�) 𝑓 (𝜈)𝑔(𝜖)ℎ(𝜂)𝑑𝜈𝑑𝜖𝑑𝜂 + 𝜆(𝑋 − �̂�)

=

∫ ∞

−∞

∫ ∞

−∞
(𝛼 + 𝜂)(�̄� + 𝜈 − �̂�) 𝑓 (𝜈)𝑔(�̄�)ℎ(𝜂)𝑑𝜈𝑑𝜂 +

∫ ∞

−∞

∫ ∞

�̄�

∫ ∞

−∞
(𝛼 + 𝜂)2 𝑓 (𝜈)𝑔(𝜖)ℎ(𝜂)𝑑𝜈𝑑𝜖𝑑𝜂 + 𝜆

= −𝛼(�̂� − �̄�)𝑔(�̄�) + (1 − 𝐺(�̄�))(𝛼2 + 𝜎2
𝜂) + 𝜆.

(A.4)

A.3 Expected spread

The expected spread is

E𝑆 =

∫ ∞

−∞

∫ �̄�

−∞

∫ ∞

−∞
(�̄� + 𝜈) 𝑓 (𝜈)𝑔(𝜖)ℎ(𝜂)𝑑𝜈𝑑𝜖𝑑𝜂+

+
∫ ∞

−∞

∫ ∞

�̄�

∫ ∞

−∞
(�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋 − �̄� − 𝜖)) 𝑓 (𝜈)𝑔(𝜖)ℎ(𝜂)𝑑𝜈𝑑𝜖𝑑𝜂

= �̄� −
∫ ∞

�̄�

∫ ∞

−∞
(𝛼 + 𝜂)(𝑋 − �̄� − 𝜖))𝑔(𝜖)ℎ(𝜂)𝑑𝜖𝑑𝜂

= �̄� − 𝛼

∫ ∞

�̄�
(𝑋 − �̄� − 𝜖)𝑔(𝜖)𝑑𝜖.

Using equation (A.2), we can write the expected spread at the optimal reserve level 𝑋∗∗ as

E𝑆∗∗ = �̄� − 𝛼(𝑋∗∗ − �̄�) + 𝛼𝒢(�̄�)

= �̄� − 𝛼(𝑋∗ + Δ𝑋∗∗ − �̄�) + 𝛼𝒢(�̄�)

= 𝑆∗ + 𝛼(𝒢(�̄�) − Δ𝑋∗∗),

where Δ𝑋∗∗ = 𝑋∗∗ − 𝑋∗ ≥ 0. Since 𝑋∗ ≤ �̄�, we have Δ𝑋∗∗ ≥ 𝑋∗∗ − �̄� = �̄� . Since 𝒢(�̄�) − �̄� ≥ 0, we

cannot sign 𝒢(�̄�) − Δ𝑋∗∗. Thus, we get E𝑆∗∗ ≶ 𝑆∗.
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Substituting in for 𝑋∗∗ delivers

E𝑆∗∗ = �̄� − 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

(
−𝛼(1 − 𝐺(�̄�))(�̂� − �̄�) − 𝜆(�̄� − �̂�) + (𝛼2 + 𝜎2

𝜂)𝒢(�̄�)
)
+ 𝛼𝒢(�̄�)

= �̄� − 𝛼2

𝛼2 + 𝜎2
𝜂 + 𝜆

(1 − 𝐺(�̄�))(�̂� − �̄�) + 𝛼𝜆

𝛼2 + 𝜎2
𝜂 + 𝜆

(�̄� − �̂�) −
𝛼(𝛼2 + 𝜎2

𝜂)
𝛼2 + 𝜎2

𝜂 + 𝜆
𝒢(�̄�) + 𝛼𝒢(�̄�)

= �̄� − 𝛼2

𝛼2 + 𝜎2
𝜂 + 𝜆

(1 − 𝐺(�̄�))(�̂� − �̄�) + 𝛼𝜆

𝛼2 + 𝜎2
𝜂 + 𝜆

(�̄� − �̂�) + 𝛼𝜆

𝛼2 + 𝜎2
𝜂 + 𝜆

𝒢(�̄�).

B Comparative statics

This section derives the comparative statics for the optimal level of reserves in Result 4. We start

with comparative statics for the optimal reserve holdings with respect to the variance of the slope,

𝜎2
𝜂. Differentiating equation (6) yields

𝑑𝑋∗∗

𝑑𝜎2
𝜂

=
𝑑

𝑑𝜎2
𝜂

(
�̄� − 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

(1 − 𝐺(�̄�))(�̂� − �̄�) − 𝜆

𝛼2 + 𝜎2
𝜂 + 𝜆

(�̄� − �̂�) +
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝒢(�̄�)
)

=
𝛼

(𝛼2 + 𝜎2
𝜂 + 𝜆)2

(1 − 𝐺(�̄�))(�̂� − �̄�) + 𝜆

𝛼2 + 𝜎2
𝜂 + 𝜆

(�̄� − �̂�) +
𝛼2 + 𝜎2

𝜂

(𝛼2 + 𝜎2
𝜂 + 𝜆)2

𝒢(�̄�)+

+ 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

𝑔(�̄�)(�̂� − �̄�) 𝑑�̄�
𝑑𝜎2

𝜂

+
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝐺(�̄�) 𝑑�̄�
𝑑𝜎2

𝜂

,

where �̄� = �̄�(𝑋∗∗) = 𝑋∗∗ − �̄�. Therefore, we can write the above expression as(
1 − 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

𝑔(�̄�)(�̂� − �̄�) −
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝐺(�̄�)
)
𝑑𝑋∗∗

𝑑𝜎2
𝜂

=
𝛼

(𝛼2 + 𝜎2
𝜂 + 𝜆)2

(1 − 𝐺(�̄�))(�̂� − �̄�) + 𝜆

(𝛼2 + 𝜎2
𝜂 + 𝜆)2

(�̄� − �̂�) +
𝛼2 + 𝜎2

𝜂

(𝛼2 + 𝜎2
𝜂 + 𝜆)2

𝒢(�̄�).

The right-hand side of this expression is positive because 𝒢(�̄�) ≥ 0 and because we assume that

the target spread and reserves are in the ample region, i.e., �̂� > �̄�, �̂� < �̄�. We can sign the bracket

on the left-hand side via the second-order condition in equation (A.4): it is positive at a minimum
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and negative at a maximum. To see this, take the second-order condition at a minimum, which is

−𝛼(�̂� − �̄�)𝑔(�̄�) + (1 − 𝐺(�̄�))(𝛼2 + 𝜎2
𝜂) + 𝜆 > 0.

This inequality is equivalent to

𝛼2 + 𝜎2
𝜂 + 𝜆 > 𝛼(�̂� − �̄�)𝑔(�̄�) + (𝛼2 + 𝜎2

𝜂)𝐺(�̄�)

and thus

1 − 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

(�̂� − �̄�)𝑔(�̄�) −
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝐺(�̄�) > 0.

Therefore, 𝑑𝑋∗∗

𝑑𝜎2
𝜂
≥ 0.

Next we derive the comparative statics for the optimal reserve holdings with respect to the target

level of reserves, �̂�.

𝑑𝑋∗∗

𝑑�̂�
=

𝑑

𝑑�̂�

(
�̄� − 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

(1 − 𝐺(�̄�))(�̂� − �̄�) − 𝜆

𝛼2 + 𝜎2
𝜂 + 𝜆

(�̄� − �̂�) +
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝒢(�̄�)
)

= 1 + 𝜆

𝛼2 + 𝜎2
𝜂 + 𝜆

+ 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

𝑔(�̄�)(�̂� − �̄�) 𝑑�̄�
𝑑�̂�

+
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝐺(�̄�) 𝑑�̄�
𝑑�̂�

.

Rearranging terms,(
1 − 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

𝑔(�̄�)(�̂� − �̄�) −
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝐺(�̄�)
)
𝑑𝑋∗∗

𝑑�̂�
= 1 + 𝜆

(𝛼2 + 𝜎2
𝜂 + 𝜆)2

,

and thus 𝑑𝑋∗∗

𝑑�̂�
≥ 0.

To derive comparative statics with respect to the target spread, �̂�, we differentiate the optimal
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level of reserves in equation (6) and obtain

𝑑𝑋∗∗

𝑑�̂�
=

𝑑

𝑑�̂�

(
�̄� − 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

(1 − 𝐺(�̄�))(�̂� − �̄�) − 𝜆

𝛼2 + 𝜎2
𝜂 + 𝜆

(�̄� − �̂�) +
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝒢(�̄�)
)

= − 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

(1 − 𝐺(�̄�)) + 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

𝑔(�̄�)(�̂� − �̄�) 𝑑�̄�
𝑑�̂�

+
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝐺(�̄�) 𝑑�̄�
𝑑�̂�

Rearranging terms,(
1 − 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

𝑔(�̄�)(�̂� − �̄�) −
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝐺(�̄�)
)
𝑑𝑋∗∗

𝑑�̂�
= − 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

(1 − 𝐺(�̄�)),

and thus 𝑑𝑋∗∗

𝑑�̂�
≤ 0.

Finally, comparative statics with respect to the location of the kink, �̄� (i.e., demand satiation

point), can be obtained as follows

𝑑𝑋∗∗

𝑑�̄�
=

𝑑

𝑑�̄�

(
�̄� − 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

(1 − 𝐺(�̄�))(�̂� − �̄�) − 𝜆

𝛼2 + 𝜎2
𝜂 + 𝜆

(�̄� − �̂�) +
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝒢(�̄�)
)

= 1 − 𝜆

𝛼2 + 𝜎2
𝜂 + 𝜆

− 𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

𝑔(�̄�)(�̂� − �̄�) −
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝐺(�̄�)

+
(

𝛼

𝛼2 + 𝜎2
𝜂 + 𝜆

𝑔(�̄�)(�̂� − �̄�) +
𝛼2 + 𝜎2

𝜂

𝛼2 + 𝜎2
𝜂 + 𝜆

𝐺(�̄�)
)
𝑑𝑋∗∗

𝑑�̄�
,

where we used the definition �̄� = 𝑋∗∗ − �̄�. Rearranging terms, we obtain

𝑑𝑋∗∗

𝑑�̄�
=

Γ − 𝜆
Γ

,

where Γ = (𝛼2 + 𝜎2
𝜂)(1 − 𝐺(�̄�)) − 𝛼(�̂� − �̄�)𝑔(�̄�) + 𝜆 > 0 is the second-order condition for a minimum.
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B.1 Comparative statics of the variance of spreads

Taking the derivative of the variance of spreads in equation (3), we get

𝑑Var[𝑆]
𝑑𝑋

= −2𝛼2(𝒢(�̄�) − �̄�) + (𝛼2 + 𝜎2
𝜂)(2�̄� − 2𝒢(�̄�))

= 2(𝛼2𝐺(�̄�) + 𝜎2
𝜂)(�̄� −𝒢(�̄�)) > 0,

where the inequality follows from 𝒢(�̄�) > �̄� for all reserve values.

C Extension to Scarce Reserves Region

When the demand curve includes a region of scarce reserves, the central bank’s optimization

problem is given by

min
𝑋

∫ �̄�1

−∞

∫ ∞

−∞
(�̄� + 𝜈 − �̂�)2 𝑓 (𝜈)𝑔(𝜖)𝑑𝜈𝑑𝜖 +

∫ �̄�2

�̄�1

∫ ∞

−∞

∫ ∞

−∞
(�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋 − �̄�1 − 𝜖) − �̂�)2 𝑓 (𝜈)𝑔(𝜖)ℎ(𝜂)𝑑𝜈𝑑𝜂𝑑𝜖+

+
∫ ∞

�̄�2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋 − �̄�1 − 𝜖) − (𝛽 + 𝜑)(𝑋 − �̄�2 − 𝜖) − �̂�

)2
𝑓 (𝜈)𝑔(𝜖)ℎ(𝜂)𝑘(𝜑)𝑑𝜈𝑑𝜑𝑑𝜂𝑑𝜖

+ 𝜆(𝑋 − �̂�)2 ,

where 𝑘 is the probability density function of the 𝜑 shock, which can have either finite or infinite

support.

Denote the objective function in the two-region model by ℒ1, the state vector by 𝜃 = {𝜖, 𝜈, 𝜂, 𝜑},

the state space by Θ, and the joint density function by 𝛾(𝜃). We further denote the partition of the

state space for 𝜖 between �̄�2 and ∞ (with all other variables unrestricted) by Θ2. Then, we use that∫ ∞

�̄�2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋 − �̄�1 − 𝜖) − (𝛽 + 𝜑)(𝑋 − �̄�2 − 𝜖) − �̂�

)2
𝑓 (𝜈)𝑔(𝜖)ℎ(𝜂)𝑘(𝜑)𝑑𝜈𝑑𝜑𝑑𝜂𝑑𝜖

=

∫ ∞

�̄�2

∫ ∞

−∞

∫ ∞

−∞
(�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋 − �̄�1 − 𝜖) − �̂�)2 𝑓 (𝜈)𝑔(𝜖)ℎ(𝜂)𝑑𝜈𝑑𝜂𝑑𝜖+

+
∫
𝜃∈Θ2

(
−2(�̄� + 𝜈 − (𝛼 + 𝜂)(𝑋 − �̄�1 − 𝜖) − �̂�)(𝛽 + 𝜑)(𝑋 − �̄�2 − 𝜖) + (𝛽 + 𝜑)2(𝑋 − �̄�2 − 𝜖)2

)
𝛾(𝜃)𝑑𝜃.
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Combining the terms results in the objective function

ℒ1 +
∫
𝜃∈Θ2

(
−2(�̄� + 𝜈 − �̂�)(𝛽 + 𝜑)(𝑋 − �̄�2 − 𝜖) + 2(𝛼 + 𝜂)(𝛽 + 𝜑)(𝑋 − �̄�1 − 𝜖)(𝑋 − �̄�2 − 𝜖) + (𝛽 + 𝜑)2(𝑋 − �̄�2 − 𝜖)2

)
𝛾(𝜃)𝑑𝜃

= ℒ1 +
∫
𝜃∈Θ2

(
2(�̂� − �̄�)𝛽(𝑋 − �̄�2 − 𝜖) + 2𝛼𝛽(𝑋 − �̄�1 − 𝜖)(𝑋 − �̄�2 − 𝜖) + (𝛽 + 𝜑)2(𝑋 − �̄�2 − 𝜖)2

)
𝛾(𝜃)𝑑𝜃

The first-order condition (as before, multiplied by 1/2) is given by:

0 =
𝑑ℒ1
𝑑𝑋

+
∫
𝜃∈Θ2

(𝛽(�̂� − �̄�) + 2𝛼𝛽𝑋∗∗∗ − 𝛼𝛽(�̄�1 + �̄�2) − 2𝛼𝛽𝜖 + (𝛽 + 𝜑)2(𝑋∗∗∗ − �̄�2 − 𝜖))𝛾(𝜃)𝑑𝜃

=
𝑑ℒ1
𝑑𝑋

+
∫
𝜃∈Θ2

(
(2𝛼𝛽 + (𝛽 + 𝜑)2)𝑋∗∗∗ + 𝛽(�̂� − �̄�) − 𝛼𝛽(�̄�1 + �̄�2) − (2𝛼𝛽 + (𝛽 + 𝜑)2)𝜖 − (𝛽 + 𝜑)2�̄�2

)
𝛾(𝜃)𝑑𝜃

=
𝑑ℒ1
𝑑𝑋

+ (2𝛼𝛽 + E[𝛽 + 𝜑)2])(1 − 𝐺(�̄�2))𝑋∗∗∗

+
(
𝛽(�̂� − �̄�) − 𝛼𝛽(�̄�1 + �̄�2) − E[(𝛽 + 𝜑)2]�̄�2

)
(1 − 𝐺(�̄�2)) − (2𝛼𝛽 + E[𝛽 + 𝜑)2])

∫ ∞

�̄�2

𝜖𝑔(𝜖)𝑑𝜖,

where 𝑑ℒ1
𝑑𝑋

is calculated at the optimum, 𝑋∗∗∗. Using that
∫ ∞
�̄�2

𝜖𝑔(𝜖)𝑑𝜖 = 𝒢(�̄�2) − �̄�2𝐺(�̄�2) and
�̄�2 = 𝑋∗∗∗ − �̄�2, we get

(2𝛼𝛽 + E[𝛽 + 𝜑)2])(1 − 𝐺(�̄�2))𝑋∗∗∗ +
(
𝛽(�̂� − �̄�) − 𝛼𝛽(�̄�1 + �̄�2) − E[(𝛽 + 𝜑)2]�̄�2

)
(1 − 𝐺(�̄�2)) + (2𝛼𝛽 + E[(𝛽 + 𝜑)2]) (�̄�2𝐺(�̄�2) −𝒢(�̄�2))

= (2𝛼𝛽 + E[𝛽 + 𝜑)2])(𝑋∗∗∗ − �̄�2) +
(
𝛽(�̂� − �̄�) − 𝛼𝛽(�̄�1 − �̄�2)

)
(1 − 𝐺(�̄�2)) − (2𝛼𝛽 + E[(𝛽 + 𝜑)2])𝒢(�̄�2)

Taken together, we get the combined first-order condition

(𝛼2 + 𝜎2
𝜂 + 𝜆)(𝑋∗∗∗ − �̄�1) + 𝛼(1 − 𝐺(�̄�1))(�̂� − �̄�) + 𝜆(�̄�1 − �̂�) − (𝛼2 + 𝜎2

𝜂)𝒢(�̄�1)+

+ (2𝛼𝛽 + 𝛽2 + 𝜎2
𝜑)(𝑋∗∗∗ − �̄�2) + 𝛽(1 − 𝐺(�̄�2))(�̂� − �̄�) − 𝛼𝛽(1 − 𝐺(�̄�2))(�̄�1 − �̄�2) − (2𝛼𝛽 + 𝛽2 + 𝜎2

𝜑)𝒢(�̄�2) = 0

which simplifies to

𝑋∗∗∗ =
𝛼2 + 𝜎2

𝜂 + 𝜆

(𝛼 + 𝛽)2 + 𝜎2
𝜂 + 𝜎2

𝜑) + 𝜆
𝑋∗∗+

+
𝛽(1 − 𝐺(�̄�2))

((𝛼 + 𝛽)2 + 𝜎2
𝜂 + 𝜎2

𝜑) + 𝜆
(�̄� + 𝛼(�̄�1 − �̄�2) − �̂�) +

2𝛼𝛽 + 𝛽2 + 𝜎2
𝜑

((𝛼 + 𝛽)2 + 𝜎2
𝜂 + 𝜎2

𝜑) + 𝜆
(�̄�2 +𝒢(�̄�2)).
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𝑆 = �̄�+ 𝛼(�̄�1 − �̄�2) > �̂� is the spread at 𝑋 = �̄�2 with 𝜖 = 0, 𝜈 = 0, and 𝜂 = 0. To show that 𝑋∗∗∗ > 𝑋∗∗,

we use that 𝒢(�̄�2) ≥ �̄�2 = 𝑋∗∗∗ − �̄�2. Consequently, 𝒢(�̄�2) + �̄�2 ≥ 𝑋∗∗∗ and thus the last term on the

right-hand side can be replaced:

𝑋∗∗∗ ≥
𝛼2 + 𝜎2

𝜂 + 𝜆

(𝛼 + 𝛽)2 + 𝜎2
𝜂 + 𝜎2

𝜑) + 𝜆
𝑋∗∗+

+ 𝛽(1 − 𝐺(�̄�2))
((𝛼 + 𝛽)2 + 𝜎2

𝜂 + 𝜎2
𝜑) + 𝜆

(�̄� + 𝛼(�̄�1 − �̄�2) − �̂�) +
2𝛼𝛽 + 𝛽2 + 𝜎2

𝜑

((𝛼 + 𝛽)2 + 𝜎2
𝜂 + 𝜎2

𝜑) + 𝜆
𝑋∗∗∗.

Solving for 𝑋∗∗∗ results in

𝑋∗∗∗ ≥ 𝑋∗∗ +
𝛽(1 − 𝐺(�̄�2))
𝛼2 + 𝜎2

𝜂 + 𝜆
(�̄� + 𝛼(�̄�1 − �̄�2) − �̂�).
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Figures

Figure 1: Bank Reserves and Fraction of Days With No Change in Daily Spread. The solid
black line represents the percentage of days within 60-day rolling windows on which the change
in the daily interest rate spread is zero. The spread is the difference between the daily volume-
weighted median federal funds rate and a measure of the target rate; consistent with the changes in
monetary policy implementation during the sample period, the target rate is measured as the federal
funds target rate for 10/02/2006-12/15/2008, the interest rate on excess reserves for 12/16/2008-
07/28/2021, and the interest rate on reserves balances for 07/29/2021-10/22/2023. The 60-business-
day windows (roughly a quarter) roll every 20 business days (roughly a month). The gray shaded
area shows central bank reserves relative to commercial banks’ assets. Data are from October 2006
to October 2023. The daily volume-weighted median federal funds rate is publicly available from
Federal Reserve Bank of New York (10/2/2006-02/29/2016) and from the Federal Reserve Economic
Data, FRED (“EFFR,” 03/01/2016-10/23/2023). The daily federal funds target rate, interest rate on
excess reserve, and interest rate on reserves balances are available from FRED (“DFEDTAR,” “IOER,”
and “IORB”). Weekly data on reserves and total assets of U.S. commercial banks and U.S. branches
and agencies of foreign banks are available from FRED (“WRESBAL” and “TLAACBW027SBOG”).

32



Figure 2: A Graphical Representation of Uncertainty about the Demand for Reserves. These
figures show the effects of different types of uncertainty on the demand for reserves in equation
(1). Panel (a) shows the effect of uncertainty about the location of the kink �̄� (i.e., point of demand
satiation), represented by the 𝜖 shock; panel (b) shows the effect of uncertainty about the slope in the
ample reserves region 𝛼, represented by the 𝜂 shock; and panel (c) shows the effect of uncertainty
about the floor of the demand curve �̄�, represented by the 𝜈 shock.

(a) Uncertainty about the location of the kink (𝜖 shock) (b) Uncertainty about the slope (𝜂 shock)

(c) Uncertainty about the floor (𝜈 shock)
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Figure 3: Expected Interest Rate Spread and Optimal Reserves. This figure shows the expected
spread between the market-implied policy rate and the interest rate on reserve balances, both absent
uncertainty and in the presence of different types of uncertainty about the reserve demand curve.
The black line represents the deterministic case as well as the case with uncertainty about the slope
in the ample reserves region (𝜂 shocks), but without uncertainty about the location of the kink
between ample and abundant reserves (i.e., the satiation point; 𝜖 shocks). The red line represents
the case with uncertainty about the location of the kink. The squares represent the expected spreads
at the optimal reserve levels in the different specifications: black for the deterministic case, blue for
the case with uncertainty about the slope but without uncertainty about the location of the kink,
red for the case with uncertainty about the location of the kink but without uncertainty about the
slope, and green for the case with uncertainty about both the location of the kink and the slope.
In these figures, the shocks are assumed to be independent, normally distributed, and with zero
mean. Note that the expected spread and optimal reserves when there is only uncertainty about
the floor of the demand curve (𝜈 shocks) are the same as in the deterministic case.
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Figure 4: Variability of the Interest Rate Spread and Optimal Reserves. This figure shows the
standard deviation of the spread between the market-implied policy rate and the interest rate on
reserve balances, both absent uncertainty and in the presence of different types of uncertainty about
the reserve demand curve. The black line is for the deterministic case; the blue line is for the case
with uncertainty about the slope in the ample reserves region (𝜂 shocks) but without uncertainty
about the location of the kink between ample and abundant reserves (i.e., the satiation point; 𝜖
shocks); the red line is for the case with uncertainty about the location of the kink but without
uncertainty about the slope; and the green line is for the case with uncertainty about both the
location of the kink and the slope. The squares represent the spread standard deviations at the
optimal reserve levels in the different specifications. In these figures, the shocks are independent,
normally distributed, and with zero mean. Note that, when there is only uncertainty about the floor
of the demand curve (𝜈 shocks), the standard deviation of the spread is a positive constant for all
reserve values (i.e., a vertical upward shift relative to the deterministic case), and the corresponding
optimal reserve level is the same as in the deterministic case.
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