
FEDERAL RESERVE BANK OF SAN FRANCISCO 

WORKING PAPER SERIES 

Distribution of Market Power, Endogenous Growth,  
and Monetary Policy 

 
Yumeng Gu 

International Monetary Fund 
 

Sanjay R. Singh 
Federal Reserve Bank of San Francisco 

University of California, Davis 
 
 

February 2024 
 

 
Working Paper 2024-09 

 
https://doi.org/10.24148/wp2024-09 

 
Suggested citation:  

Gu, Yumeng and Sanjay R. Singh. 2024. “Distribution of Market Power, Endogenous 
Growth, and Monetary Policy,” Federal Reserve Bank of San Francisco Working Paper 
2024-09. https://doi.org/10.24148/wp2024-09 
 
 
The views in this paper are solely the responsibility of the authors and should not be interpreted 
as reflecting the views of the Federal Reserve Bank of San Francisco or the Board of Governors 
of the Federal Reserve System.  



Distribution of Market Power, Endogenous Growth,

and Monetary Policy ∗

Yumeng Gu† Sanjay R. Singh‡

February 2024

Abstract

We incorporate incumbent innovation in a Keynesian growth framework to gener-

ate an endogenous distribution of market power across firms. Existing firms increase

markups over time through successful innovation. Entrant innovation disrupts the ac-

cumulation of market power by incumbents. Using this environment, we highlight a

novel misallocation channel for monetary policy. A contractionary monetary policy

shock causes an increase in markup dispersion across firms by discouraging entrant

innovation relative to incumbent innovation. We characterize the circumstances when

contractionary monetary policy may increase misallocation.

Keywords: Monetary policy, Markup dispersion, Allocative efficiency, Endogenous

distribution of market power.
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1 Introduction

In this paper, we study the business cycle interaction of monetary policy with TFP growth

and product market power. We characterize a novel channel through which monetary policy

can affect allocative efficiency in the economy.

We incorporate incumbent innovation into a Keynesian growth model (Benigno and

Fornaro, 2018). In the model, firms accumulate market power through incumbent innova-

tion over time (Peters, 2020). Successful innovation by entrants results in the displacement

of existing firms and disrupts the accumulation of market power by the incumbents. A cross-

sectional distribution of markups endogenously responds to business cycle shocks through

variations in entrant innovation. A contractionary monetary policy shock reduces the in-

centives for potential entrants to innovate. If existing firms continue to innovate unaffected

by such shocks, they accumulate higher market power with successful innovation. Thus, a

monetary policy-induced recession may reduce the incentives for potential entrants to in-

novate, lower the allocative efficiency across firms, and lead to an endogenous slowdown in

TFP growth.

The interaction of market power and monetary policy is at the heart of the new Key-

nesian models. In a standard textbook new Keynesian model (Galí 2015, Chapter 3), the

assumption of Calvo price rigidities introduces price dispersion across firms. When there is

a contractionary monetary policy shock, some firms get to reset prices while others do not.

The firms that reset prices maintain a constant markup, while the markups go up for firms

that cannot adjust prices since marginal costs fall with reduced aggregate demand. In the

textbook model, with monopolistic competition, homogeneous price rigidity across firms,
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and constant elasticity of demand, the markup dispersion goes up irrespective of whether

the shock is contractionary or expansionary. The markup dispersion can decrease with ex-

pansionary monetary policy shocks in our setting.

Our misallocation channel is independent of the co-variability of pass-through with the

level of markups. We show that even when the pass-through of marginal costs into markups

is the same for all firms, monetary policy has misallocation effects through its impact on

the cross-sectional distribution of market power across firms. The effect arises entirely from

the extensive margin of firm entry. To our knowledge, this mechanism is distinct from other

complementary analyses of misallocation effects of monetary policy. Baqaee, Farhi and San-

gani (2024) and Meier and Reinelt (2022) study allocative efficiency effects of monetary

policy and are closely related to the theme of our paper. A key to the misallocation channel

highlighted in these papers is the negative covariance between the level of markups and the

pass-through of marginal costs into prices. In Meier and Reinelt (2022), this negative covari-

ance endogenously arises from heterogeneous price rigidity across firms in an environment

with aggregate risk. Baqaee et al. (2024) consider general settings when the negative covari-

ance could arise from variable elasticity of demand faced by the firms or heterogeneous price

rigidities. Relatedly, Baqaee and Farhi (2019) provide a general treatment of misallocation

in general equilibrium models (see also Basu and Fernald, 2002).

The quantitative importance of the mechanism we highlight is limited. We explain why

the degree of misallocation is bounded above by two forces that counteract each other. Fol-

lowing a contractionary monetary policy shock, the entrant innovation rate declines relative

to the incumbent innovation rate. A dispersion effect manifests through an increase in

markup dispersion, giving rise to greater aggregate misallocation. Meanwhile, a level effect
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occurs as the average level of markups rises alongside the increase in markup dispersion.

This conditionally counter-cyclical movement in the average markup level (i.e., the average

markup level increases in response to a monetary contraction) generates an opposing force to

the misallocation effect of monetary policy arising from the rise in markup dispersion. These

two opposing forces preclude us from finding quantitatively large effects. In an oligopolis-

tic competition environment with heterogeneous firms that feature an endogenous return to

scale and customer acquisition, Gu (2022) remedies this dampening of misallocation through

a mechanism that generates a pro-cyclical response of average markups to a monetary easing,

potentially aligning these two forces to increase misallocation.

We further ask how the resulting misallocation depends on the initial condition of the

economy. In particular, whether the misallocation is higher in a steady state with a high en-

trant innovation rate relative to incumbent innovation. We show that the state dependency

is ambiguous and that a higher rate of steady state entrant innovation does not necessarily

lead to more misallocation. A caveat of these exercises is that the initial conditions are

functions of the deep parameter of the model. For our baseline parametrization, we numer-

ically show how the degree of misallocation varies according to the steady-state level of the

entrant’s innovation. Specifically, we find that while the level effect weakens monotonically

as the entrant’s innovation increases, the dispersion effect is stronger at very low and very

high levels of the entrant’s innovation rate. The dispersion effect dominates in magnitude,

and the misallocation worsens as the steady state level of entrant innovation rises, holding

the incumbent’s rate of innovation fixed.

In Section 2, we show the misallocation channel of monetary policy through a series of

propositions. The baseline model assumes that the potential entrants are myopic and that
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the incumbent innovation is exogenous. These assumptions give us analytical tractability

and help highlight our key mechanism. We generalize these results in Section 3 by first,

relaxing the myopic assumption for the potential entrants, second, endogenizing incumbent

innovation over the business cycles, and third, adopting a more general constant-elasticity-

of-substitution (CES) demand structure. The misallocation channel of monetary policy we

highlight is robust to these theoretical extensions.

We contribute to the literature on the interaction of monetary policy with the productive

potential of the economy (Anzoategui, Comin, Gertler and Martinez, 2019; Bianchi, Kung

and Morales, 2019; Garga and Singh, 2021; Moran and Queralto, 2018) by endogenizing

allocative efficiency over the business cycle.1 Relative to papers considering endogenous pro-

ductivity growth in business cycle models, our model underscores the short-run variation in

allocative efficiency across firms and the medium-run effects of monetary policy. Our setup

is closer to that of Benigno and Fornaro (2018), who model a scenario where pessimistic

expectations put the economy on a low growth trajectory. We build on their work and endo-

genize a distribution of market power across firms by allowing incumbent firms to accumulate

market power over time.

Peters (2020) characterized the misallocation effects from changes in the distribution of

market power in a model with both incumbent and entrant innovation.2 Peters and Walsh
1Cerra, Fatás and Saxena (2022) provide a recent literature review. See Cerra and Saxena (2008); Jordà,

Singh and Taylor (2021) for evidence on persistent effects of temporary shocks or Jordà, Schularick and
Taylor (2013) for evidence on deep and protracted recovery/non-recovery from financial crises relative to
normal recessions for advanced economies. For additional references, see, for example, Acharya, Bengui,
Dogra and Wee (2022); Annicchiarico and Pelloni (2016); Ates and Saffie (2021); Cloyne, Martinez, Mumtaz
and Surico (2022); Fatás and Mihov (2013); Fatás and Singh (2024); Fornaro and Wolf (2023); Furlanetto,
Lepetit, Robstad, Rubio Ramírez and Ulvedal (2023); Guerron-Quintana and Jinnai (2019); Queralto (2020,
2022); Vinci and Licandro (2021).

2Acemoglu and Cao (2015) provide a textbook extension of the Schumpeterian growth framework incor-
porating simultaneous innovation by incumbents and entrants.
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(2020) extend Peters (2020)’s framework to quantitatively assess the role of low population

growth in explaining several secular trends in the US. We extend Peters (2020)’s work to

study the misallocation effect of monetary policy through its impact on the distribution of

markups across firms. Greaney and Walsh (2023) also uses a similar framework to study the

amplification of debt deleveraging during the Great Recession.

These misallocation and business cycle analyses relate to an earlier literature studying

firm dynamics. Jaimovich and Floetotto (2008) and Etro and Colciago (2010) propose models

in which oligopolistic competition leads to an inverse relationship between the number of

competitors and the level of price markup. Bilbiie, Ghironi and Melitz (2008, 2012) model

a negative relation between markups and the number of firms via translog preferences on

consumers (Feenstra, 2003). A contractionary business cycle shock by reducing firm entry,

and thus the number of competitors, makes demand less elastic and allows firms to charge

higher markups.3 In our paper, the distribution of markups across firms and not just average

markup is endogenous. Moreover, the endogeneity of average markups here arises from the

interaction of entrant and incumbent innovation and not due to strategic decisions by firms

with a time-varying number of competitors. Atkeson and Burstein (2008) and De Blas and

Russ (2015) study models with heterogeneous firms and a distribution of markups that arises

endogenously due to the strategic behavior of firms. As noted in Baqaee et al. (2024), the

covariance between the pass-through of marginal costs into prices and the level of markups

is key in these models to generate time-varying misallocation.

Our misallocation channel is also not covered in the Darwinian effect of firm entry isolated
3See also Bergin and Corsetti (2008) and Faia (2012) for additional analyses of monetary policy in

oligopolistic environments.
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by Baqaee, Farhi and Sangani (2023). The Darwinian effect of entry relies on non-CES

demand structure – the entry of new firms causes the aggregate price index to fall, resulting in

a reallocation towards high-markup (low price elasticity of demand) firms, holding markups

constant. Not all incumbents are exposed to firm entry similarly, leading to a selection of the

fittest/most productive. In our setup, the Darwinian effect is silenced since all incumbents

are identically exposed to firm entry, and there exists no selection of the most productive.

In more recent work, Morlacco and Zeke (2021) connect low-interest rates to the increased

market power of firms through a customer capital channel (Gourio and Rudanko, 2014) in

a duopolistic industry setup. Afrouzi and Caloi (2023) connect cyclicality of output growth

to cyclicality of markups in models with variable markups. Afrouzi, Drenik and Kim (2023)

investigate the role of customer acquisition and average sales in determining a firm’s market

share and price-cost markup, respectively. Liu, Mian and Sufi (2022) emphasize a link

between market power, real interest rates, and low productivity growth in an endogenous

growth model with two firms (leader and follower) within an industry engaged in a gradual

step-by-step innovation race (Aghion, Harris, Howitt and Vickers, 2001). Duval, Furceri, Lee

and Tavares (2021) and Ferrando, McAdam, Petroulakis and Vives (2021) find low product-

markup firms tend to be more responsive to monetary policy shocks than high markup firms.

Duval, Furceri, Lee and Tavares (2023) explores this state dependence through a financial

constraints channel (Aghion, Farhi and Kharroubi, 2015, 2019). Burya, Mano, Timmer and

Weber (2022) investigate the interaction between monetary policy and labor market power.

Structure of the paper. The rest of the paper is organized as follows. Section 2

proposes the baseline theoretical model and discusses the main theoretical implications in

a series of propositions. Section 3 presents various theoretical extensions that generalize
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our baseline results, and discusses consistent empirical evidence from the existing literature.

Section 4 concludes.

2 Theory

This section builds heavily on earlier seminal work of Aghion and Howitt (1992) and more

recent works of Benigno and Fornaro (2018) and Peters (2020). In an otherwise standard

endogenous growth framework of vertical innovation, we follow Benigno and Fornaro (2018)

in constructing a Keynesian growth model by incorporating nominal wage rigidities. Nomi-

nal wage rigidities introduce a mechanism for monetary policy to have real effects. The new

element we introduce to the Benigno and Fornaro (2018) framework is that both the entrants

and the incumbent firms can innovate, and these two forces of creative destruction (the tra-

ditional force) and own innovation (the new addition) interact with each other to collectively

determine the growth rate of productivity and endogenously generate a cross-sectional dis-

tribution of markups. Monetary policy shocks can affect the cross-sectional distribution of

markups by changing incentives for innovation by entrants.

2.1 The Environment

Households. The economy is populated with a measure one of infinitely lived households.

Each household has the following preferences over a unique final consumption good. The

lifetime utility of the representative household is given by

E0

[
∞∑
t=0

βt

(
C1−σ

t − 1

1− σ

)]
,
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where Ct denotes consumption at time t, β ∈ (0, 1) is the subjective discount factor, and σ

is the inverse of the elasticity of intertemporal substitution.

Each household is endowed with one unit of labor, and labor supply is inelastic. There

is a one-period risk-free bond Bt traded in the units of currency and pays a (net) nominal

interest rate it. Households also own an equal share of all firms, and they receive Φt in

dividends from the firms’ profits each period.

The intertemporal problem of a representative household is to choose Ct and Bt+1 to

maximize its lifetime utility subject to a budget constraint and a non-Ponzi constraint:

PtCt +Bt+1 = WtLt +Bt(1 + it−1) + Φt,

where Pt is the price of the final good in units of currency,4 and Wt is the nominal wage.

As such, WtLt is the household’s labor income. Gross inflation rate, Πt, is defined as the

growth rate of Pt.

Final Good Production. The perfectly competitive final good, Yt is a Cobb-Douglas

aggregate of a continuum of differentiated intermediate goods, and each variety xit is denoted

with subscript i such that

lnYt =

∫ 1

0

lnxitdi. (1)

We assume monopolistic competition across intermediate good varieties. The assumption

of unitary elasticity of demand provides analytical tractability. Let Pt denote the aggregate

price level. Then the demand for each variety i is xit = PtYt

pit
, where pit is the price of

4Following Woodford (1998), our setup is that of a “cashless limit" environment of a monetary economy.
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intermediate variety i. That is, all varieties have equal sales-share in final output. The

aggregate price level is then given by: lnPt =
∫ 1

0
ln pitdi.

Intermediate Goods Production. We assume that within each product market i, there

are a number of firms Sit, each denoted with f , that supply a perfectly substitutable good

xfit. That is, xit =
∑

f∈Sit
xfit. Each firm f operates a constant returns to scale technology:

xfit = qfit lfit, where qfit is productivity of the firm, and lfit is the labor hired by the firm. A

firm f takes economy-wide wage rate as given. Firms within a given variety i compete with

each other á la Bertrand competition. As a result, only the most efficient firm in market

i produces the intermediate variety qit. The presence of competing firms, however, implies

a limit pricing strategy for the active producer, i.e., the most efficient firm, within a given

variety i, sets price equal to the marginal cost of the immediate follower or the second most

efficient firm within that variety. Denote the immediate follower with a superscript F . The

equilibrium markup for variety i is thus given by

µit ≡
pit

Wt/qit
=

Wt/q
F
it

Wt/qit
=

qit
qFit

, (2)

where Wt is the equilibrium wage that the firms take as given, and Wt

qFit
denotes the marginal

cost of the immediate follower F . We suppress the subscript f since only the leader is

active in production of variety i. Equilibrium profits for a producer of variety i are given as

Φit = (1− µ−1
it )PtYt.

Innovation and Creative Destruction. Growth in the model stems from innovations

that improve the quality of the intermediate varieties. These innovations come from two
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sources: (i) creative destruction from a new firm that displaces the incumbent in production

of variety i, and (ii) own innovation from the incumbent that increases its market power.5

Following Aghion and Howitt (1992), productivity improvements, within each variety, are

ranked on a quality ladder with each successive improvement λ > 1 step size higher than

the previous innovation. Regardless of whether the innovation arises from incumbents or the

entrants, we assume the same step-size improvement.

Creative destruction from an entrant reduces the quality gap to unity, whereas own

innovation increases quality gap, thus empowering the incumbent to charge higher markups.

This innovation structure implies that the equilibrium markups can be written as

µit =
qit
qFit

=
λsit

λsFit
= λsit−sFit ≡ λ∆it , (3)

where sit and sFit denote respective steps on the ladder, and ∆it = sit − sFit ≥ 1 represents

an active firm’s productivity advantage relative to its immediate follower. We also assume

that there is a large exogenous upper limit in maximum quality gap, denoted by a finite

positive integer N̄ . For the baseline model, we focus on the case with the maximum quality

gap N̄ → ∞. In Section 2.5 we show that in the log-linearized equilibrium, we do not

need to account for the quality gap distribution, and aggregation of the economy ensures

a finite state space.6 In the appendix, we provide steady state equilibrium conditions and

log-linearized competitive equilibria for both cases when N̄ is a finite number and the limit
5Peters (2020) also allows two additional sources of innovations: (i) entrants innovating on new product

varieties without displacing any incumbents, and (ii) incumbents expanding their product lines. We abstract
from those two sources.

6Presenting the special case with a finite N̄ is nevertheless useful, as we study theoretical extensions
involving the CES preferences, in which firms with sufficiently large quality gaps would charge the uncon-
strained CES markup in place of the limit price, effectively imposing an upper limit to quality gap ∆.
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case when N̄ → ∞.

Consequently, equilibrium profits for intermediate good producer i can be written as

function of the quality gap between the productivity of the leader and the immediate follower.

That is, Φit = (1− λ−∆it)PtYt ≡ Φt(∆i).

Each potential entrant, in variety i, invests labor resources into conducting research and

development (R&D). With probability 0 < zit < 1 , she is successful in making a process

improvement, and gets the monopoly rights (patent) of the production of intermediate variety

i in the following period. If she fails to innovate, the incumbent continues to produce with

its productivity qit. The entrepreneur in each variety i chooses probability zit to maximize

the expected discounted profits (from the patent). As in Benigno and Fornaro (2018), we

assume that the monopolist gets the patent for only one period. That is,

max
zit

Et [Dt,t+1zitΦt+1(1)]− δzz
ζz
it Wt,

where ζz ≥ 1 denotes the curvature of the cost function, Dt,t+1 = β
C−σ

t+1

C−σ
t

Pt

Pt+1
is the stochastic

discount factor, and Φt(1) is the equilibrium profits of a producer with unit quality gap.7

Each potential entrant hires δzz
ζz
it workers to conduct R&D. We focus on a symmetric equi-

librium whereby entrants in all varieties i choose the same innovation success rate zt.

Conditional on not being displaced by an innovating entrant, we assume that the firm’s

ownership is allocated to a random entrepreneur in each successive period.8 With an ex-
7We make parameter assumptions to ensure that zt > 0 in competitive equilibrium. We therefore do

not explicitly incorporate the complementary slackness condition in the first order condition of the entrant’s
problem.

8This assumption of one period patents is made following Aghion and Howitt (2008) and Acemoglu,
Aghion, Bursztyn and Hemous (2012). It considerably simplifies the analysis. In their papers, it is made
when the existing firm does not undertake any new innovation. In our setup, we allow the surviving firm to
innovate at an exogenous rate.
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ogenous probability 0 < It < 1, the non-displaced firm accumulates market power through

successful innovation in process improvements. This assumption simplifies our analysis con-

siderably. Furthermore note that while we assume an exogenous incumbent innovation rate

I for our baseline model. In Section 3.4, we discuss evidence that R&D expenditures of U.S.

listed firms do not exhibit a significant response to monetary policy shocks. Given our focus

on short-run responses to temporary adverse shocks, we view this assumption as empirically

relevant. We nevertheless relax this assumption in theoretical extensions.

Cross-Sectional Distribution of Markups. Let {υt(∆)}N̄∆=1 denote the measure of

product varieties with quality gap ∆ at time t. Given an initial distribution of markups,

the next period distribution of markups evolves according to innovations by entrants and

incumbents, with the following laws of motion:

υt+1(∆) = zt + (1− zt)(1− I)υt(∆) if ∆ = 1, (4)

υt+1(∆) = (1− zt)(1− I)υt(∆) + (1− zt)Iυt(∆− 1) if 2 ≤ ∆ ≤ N̄ − 1, (5)

υt+1(∆) = (1− zt)υt(∆) + (1− zt)Iυt(∆− 1) if ∆ = N̄ . (6)

where equation 4 describes the evolution of the measure of firms at quality gap 1. On

average zt varieties will be creatively destroyed by entrants and will feature price-markups

given by unit quality gap. In remaining sectors, that is measure 1 − zt, incumbents could

move to higher step ladder and charge higher markups with probability I. Of the measure

of product varieties that were at quality gap 1, (1− zt)(1− I) fraction will remain at quality

gap 1. Likewise, in equation 5, for a given quality gap ∆ less than N̄ and larger than 1,
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(1 − zt)(1 − I)υt(∆) measure of varieties will survive displacement by entrants and not be

able to move up to a higher step ladder; meanwhile, (1− zt)Iυt(∆− 1) measure of varieties

will survive displacement by entrants and move up the quality ladder and charge a higher

markup based on the new quality gap ∆. Similarly, equation 6 summarizes the evolution

of quality gap ∆ = N̄ when further own innovation is no longer possible. As N̄ → ∞, this

equation is dropped in the baseline model.

2.2 Nominal Rigidities

We introduce nominal rigidities through a simple indexation rule following Benigno and

Fornaro (2018). Nominal wages are assumed to follow the following process:

Wt = πwWt−1, (7)

where πw > 0 is a constant wage-inflation rate.

2.3 Government Policy

As in Benigno and Fornaro (2018), the central bank sets the nominal interest rate on short-

term government bond according to the following rule:

1 + it
1 + iss

=

(
Lt − δzz

ζz
t

Lss − δzz
ζz
ss

)ϕ

ϵmt =

(
Lpt

Lp

)ϕ

ϵmt , (8)

where ϕ > 0 and ϵmt is an exogenous AR(1) process with persistence ρ ∈ (0, 1). The

central bank sets nominal interest rate in order to target deviation of employment in the
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production sector from its steady state level by cutting the interest rates in response to

falling employment levels. In addition, the short-term government bonds are in net zero

supply, and the government balances it budget every period.

2.4 Aggregation and Market Clearing

We can now discuss aggregation of the economy. In equilibrium, labor hired by each firm i

is given by

lit =
xit

qit
=

PtYt

pitqit
=

PtYt

µitWt

=
PtYt

Wt

µ−1
it , (9)

and the total amount of labor hired by intermediate goods producers, denoted with Lpt, is

given by

Lpt =

∫ 1

0

litdi =
PtYt

Wt

∫ 1

0

µ−1
it di. (10)

Equilibrium nominal wage Wt is given by

Wt = exp(lnPt +

∫ 1

0

ln qFitdi) = Pt × exp(

∫ 1

0

ln
qit
µit

di) = PtQt × exp(

∫ 1

0

lnµ−1
it di), (11)

where lnQt =
∫ 1

0
ln qitdi denotes technical efficiency of the economy. Long-run growth in

this economy is captured by increases in Qt. Entrant and incumbent innovation increases

quality of intermediate goods by a step size of λ. A fraction zt of products are improved

through entrant innovation each period. After the entrant innovation is realized, I fraction

of the remaining sectors see an improvement through incumbent innovation. Firms produce

with improved quality in the following period. Consequently, the growth rate of technical
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efficiency, denoted by gt+1, is given by

gt+1 =
Qt+1

Qt

= (zt + I − ztI)(λ− 1) + 1

Using equations (10) and (11), Aggregate output can be written as

Yt = QtLptMt, where Mt ≡
exp

(∫ 1

0
lnµ−1

it di
)

∫ 1

0
µ−1
it di

=
exp{−Ei[lnµi,t]}

Ei[µ
−1
i,t ]

, (12)

and Mt is a measure of allocative efficiency in the economy. Higher markup dispersion, leads

to a lower value of Mt. From equation (12), notice that Mt = 1 if and only if markups are

all equalized across producers. In the absence of markup dispersion, there are no allocative

efficiency losses. Furthermore, Mt ≤ 1, and Mt decreases as the dispersion of markups

increases, i.e., higher markup dispersion reduces allocative efficiency.

Labor market clears, with labor used in intermediate goods’ production and R&D adds

up to the total labor employed, Lt, in the economy:

Lpt + δzz
ζz
t = Lt ≤ 1

Market clearing for final goods implies that total consumption expenditure equals total

output produced:

Yt = Ct
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2.5 Equilibrium

We formally define the competitive equilibrium of the economy in Appendix A.1. In order to

obtain a stationary system of equations, we normalize the equilibrium equations by dividing

the non-stationary level of output by the level of technical efficiency Qt, and dividing nominal

wage level with the product of aggregate price level, Pt, and level of technical efficiency Qt.

We define yt = Yt

Qt
as the normalized output, wt =

Wt

PtQt
as the normalized real wage. Likewise,

we formally define the normalized competitive equilibrium in Appendix A.1.

We find the balanced growth path (BGP) of the economy by imposing restrictions on

parameters such that deterministic steady state equilibrium satisfies (i) there is full employ-

ment, L = 1, (ii) entrant innovation rate is bounded, z ∈
(
0,min

(
1, 1

δ
ζ−1
z

z

))
, and (iii) net

nominal interest rate is positive, i > 0. The upper bound on z ensures that the (normal-

ized) consumption is positive in the steady state. In numerical simulations, we verify that

zt ∈ (0, 1), and ct > 0 for all t.9

Steady State. As the maximum quality gap N̄ → ∞, the steady state equilibrium is

characterized by a set of constant values {g, y, z, L, i,Π} that satisfies six equations provided

in Appendix A.3. Proposition 1 states that in steady state, the difference equations from

Equations 4 - 6 can be used to derive an analytical expression for the cross-sectional distri-

bution of markups, which in turn can be used to derive analytical expression of the aggregate

misallocation measure M. This case of N̄ → ∞ is a restatement of the result derived by

Peters (2020).

9If there is no incumbent innovation, that is the maximum quality gap N̄ = 1, the model simplifies to
the setup in Benigno and Fornaro (2018).
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Proposition 1. Let z be the steady state probability of successful entry for outside en-

trepreneurs in a stationary competitive equilibrium, and let ϑI ≡ z
(1−z)I

and ϕI ≡ 1
1+ϑI

. As

the maximum quality gap N̄ → ∞, then following results are obtained along the balanced

growth path:

1. The distribution of quality gaps ∆ is given by the following probability mass function

υ(∆):

υ(∆) =

(
1

1 + ϑI

)∆

ϑI ∀∆ (13)

2. The distribution of markups is given by the following cumulative distribution function:

F (µ,∆) = 1−
(
1

µ

) ln(1+ϑI )

lnλ

∀∆ (14)

3. The measure of aggregate misallocation is given by:

M =

(
λ
− 1+ϑI

ϑI

)(
λ(1 + ϑI)− 1

ϑI

)
(15)

Proof. See Appendix A.2.

Proposition 1 states that the probability of successful entry z relative to the probability

for incumbents to survive displacement (i.e., (1−z)I) determines the distribution of markups

and the measure of aggregate misallocation along the BGP. Furthermore, the distribution

of markups approximates a Pareto distribution with scale parameter equals to 1 and tail

parameter equals to ln(1+ϑI)
lnλ

for all ∆. The tail parameter is increasing in z, such that if

the steady state rate of successful entry declines, the distribution of markups would have a

thicker tail, and the dispersion as summarized by M would go up.
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When N̄ → ∞, our model collapses to the one studied by Peters (2020). It is nevertheless

useful to consider a case with a finite N̄ , which we later rely on in extensions of the baseline

model. We summarize the special case for a finite maximum quality gap N̄ < ∞ as the

following corollary:

Corollary 1. For a finite maximum quality gap N̄ < ∞, the following results hold alone the

BGP respectively:

1. υ(∆) =


(

1
1+ϑI

)∆
ϑI , if ∆ = 1, 2, ..., N̄ − 1(

1
1+ϑI

)N̄−1

if ∆ = N̄

2. F (µ,∆) = P(λ∆ ≤ µ) =


1−

(
1
µ

) ln(1+ϑI )

lnλ
, if ∆ = 1, 2, ..., N̄ − 1

1, if ∆ = N̄

3. MN̄ = λ−ΞN̄

ΛN̄
,

where ΛN̄ = ϑI

λ(1+ϑI)−1

[
1−

(
1

λ(1+ϑI)

)N̄−1
]
+λ−N̄

(
1

1+ϑI

)N̄−1

, and ΞN̄ = ϑI

[
ϕI(1−ϕN̄−1

I )

(1−ϕI)2
− (N̄−1)ϕN̄

I

1−ϕI

]
+

N̄
(

1
1+ϑI

)N̄−1

.

Given that the measure of quality gaps υ(∆) is probability mass function (pmf) in the

BGP, it follows that υt(∆) is also a pmf. We summarize this result in Corollary 2.

Corollary 2. Since υ(∆) is a probability mass function for discrete variable all quality gap

∆ in steady state, υt(∆) would also be a probability mass function for all quality gap ∆.

Log-linearized Equilibrium. We log-linearize the normalized competitive equilibrium

around the steady state and define the following log-linearized equilibrium:

Definition. As N̄ → ∞, the log-linearized competitive equilibrium of the economy is

defined as a sequence of variables {d log yt, d log gt+1, dzt, dit, dLt, d log Πt, dmt+1, d logMt+1}
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that satisfy the following 8 equations, for a given sequence of exogenous shocks {d log ϵmt }

and given initial values of state variables {dm0, d logM0}.

Consumption Euler equation

−σd log yt = −σEtd log yt+1 − σd log gt+1 + d log(1 + it)− dEt log Πt+1 (16)

Entrant’s innovation decision

[σd log yt − σEtd log yt+1 − σd log gt+1] + Etd log yt+1 + d log gt+1 = dmt +
ζz − 1

z
dzt (17)

Wage rigidity equation

d log Πt = −d log gt + dmt−1 − dmt (18)

Technical efficiency growth equation

d log gt+1 =
(λ− 1)(1− I)

(z + I(1− z))(λ− 1) + 1
dzt (19)

Measure of aggregate misallocation

dmt+1 = αmdzt + (1− z)dmt (20)
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d logMt+1 =(αm − αλ)dzt + (1− z)

[
1− I

(
1− 1

λ

)]
d logMt + (1− z)I

(
1− 1

λ

)
dmt, where

(21)

κA ≡ 1− (1− I)
ϑI

1 + ϑI

, κB ≡ 1

1− z
, ϑI ≡

z

(1− z)I

S⋆
I ≡

∞∑
∆=2

∆υ(∆) =
1 + ϑI

ϑI

− ϑI

1 + ϑI

,

S⋆
λ ≡

∞∑
∆=2

λ−∆υ(∆) =
ϑI

λ(1 + ϑI)− 1
− λ−1

(
ϑI

1 + ϑI

)
,

αm ≡ −(lnλ)[κA − κBS⋆
I ],

αΛ ≡ 1

Λ
[λ−1κA − κBS⋆

λ],Λ ≡ ϑI

λ(1 + ϑI)− 1
.

Resource constraint

d log yt = d log(Lt − δzz
ζz
t ) + d logMt (22)

Monetary policy rule

d log(1 + it) = ϕd log(Lt − δzz
ζz
t ) + d log ϵmt , ϕ > 0, it > 0 (23)

The consumption euler equation is the log-linearized version of household’s inter-temporal

utility maximization condition; the entrant’s innovation decision is the log-linearized trans-

formation of outside entrepreneur’s maximization condition; the wage rigidity equation is

the log-linearized version of price inflation derived from combining equations (7) and (11);
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technical efficiency growth equation summarizes how does percentage changes in rate of en-

trant’s innovation translate into growth rate of technical efficiency. Resource constraint and

monetary policy rule are obtained from log-linearizing their counterparts in the normalized

competitive equilibrium, respectively.

While the consumption Euler equation, wage rigidity equation, resource constraint, and

monetary policy rule take familiar forms as in the business cycle literature, and the tech-

nical efficiency growth equation as well as the entrant’s innovation decision are familiar to

scholars of business cycle model augmented with endogenous growth, the new ingredient is

the misallocation block with the aggregate misallocation measure (eqns 20 - 21), which is

the log-linearized transformation of the misallocation measure around the steady state. In

particular, Equation 21 shows how a percentage change in rate of entrant’s innovation could

translate into changes in measure of aggregate misallocation through the evolution of the

distribution of varieties with different quality gaps. Notably, relative to the log-linearized

equilibrium defined in Appendix A.4 for a finite N̄ , the limiting case when N̄ → ∞ does not

need to keep track of the evolution of the quality gaps, and the misallocation block can be

written recursively.

2.6 Calibration

In order to illustrate the dynamics for the baseline model, we calibrate the model with

parameters provided in Table 1. A model period corresponds to a year. We target the

real rate of interest to be 1.5% (rtarget = 1.015) as in Benigno and Fornaro (2018). The full

employment steady state growth rate to be 2% (g∗ = 1.02). Step size of successful innovation
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is set at λ = 1.069 which is equal to average improvements from innovation quoted by Akcigit

and Kerr (2018). We calibrate the own-variety incumbent innovation rate, I, and entrant

innovation rate, z, using the fact that the fraction of internal patents is equal to 21.5%

(Akcigit and Kerr, 2018). That is, I
z+I

= 0.215. This statistic, along with steady state

growth rate and innovation step size, implies an incumbent innovation rate of approximately

6.57%, and a creative destruction rate of 24%.10

Table 1: Parameters

Value Source/Target
Elas. intertemporal substitution 1/σ = 0.5 Standard value
Discount factor β = 0.96 Standard value
Wage inflation at steady state πw = 1.02
Innovation step size λ = 1.0698 Akcigit and Kerr (2018).
Own variety improvement I = 0.0657 Fraction of internal patents
Parameter for entrant’s R&D cost δz = 0.0701 First order condition for entrant innovation
Curvature of entrant’s R&D cost ζz = 1.5
Persistence of monetary shock ρm = 0.9 Standard value

Notes: Model period corresponds to a year.

2.7 Allocative Efficiency

Aggregate TFP, in the normalized economy, depends on the dispersion of markups. Given

our assumption of discrete quality gaps that a firm can be on, Mt can be expressed as

function of quality gaps, ∆, and measure of firms on those quality gaps, {υt(∆)}∞∆=1, as

follows:

Mt =
exp

(∫ 1

0
lnµ−1

it di
)

∫ 1

0
µ−1
it di

=
exp (−(lnλ)

∑∞
∆=1 ∆υt(∆))∑∞

∆=1 λ
−∆υt(∆)

. (24)

Changes in normalized output can be decomposed into changes in labor employed in the
10Note that λ = g−1

z+(1−I)z + 1.
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intermediate goods’ production, and changes in measure of aggregate misallocation. That is,

d log yt = d logLpt+d logMt. Changes in misallocation measure can be further decomposed

into a weighted changes in quality gap distribution. We summarize the result in Proposition

2 that changes in allocative efficiency are denoted with changes in Mt.

Proposition 2. Changes in allocative efficiency are given by changes in Mt, which are

summarized by a weighted average of changes in measure of varieties at each step

d logMt+1 = α1dυt+1(1) +
∞∑
j=2

αjdυt+1(j), (25)

where weights αj = −(lnλ)(j)− λ−j

Λ
< 0 ∀j = 1, 2, ..., and are all negative.

Proof. It follows from equation 24, which in turn follows from aggregation equation 12.

Proposition 2 states that change in aggregate misallocation is determined by a weighted

average of changes in mass of firms at each quality gap. A reduction in entrant innovation

rate, zt, has two effects. First, it implies that on average less number of products will face

a successful entrant in the following period. Second, of the firms that are at unit quality

gap, they have a higher likelihood of moving up the quality ladder. On net, the effect of a

reduction in zt is to reduce the mass of firms at unit quality gap, whereas at all quality gaps

larger than one, a reduction in zt increases the mass of firms at those quality gaps.

The mass of varieties at unit quality gap is increasing in the rate of entrant’s innovation zt,

whereas the masses at all other quality gaps greater than 1 are decreasing in zt. Furthermore,

given that υt(∆) is a pmf at each quality gap. Then, it follows that an increase in mass at
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unit quality gap is equal to the sum of the reduction in masses at all other quality gaps.11

As such, following a reduction in zt, next period’s measure of misallocation would increase

if the magnitudes of weighted change in mass at unit quality gap would be smaller than the

magnitude of the weighted sum of masses at the other quality gaps. Proposition 3 provides

the sufficient condition that guarantees that the misallocation is an increasing function of

entrant innovation rate.

Proposition 3. Consider an economy along the balanced growth path. At time 0, there is

an unanticipated negative shock to entrant innovation rate, zt, that is, dzt < 0. Aggregate

allocative efficiency at time 1 would fall, if condition 26 is satisfied, that is, d logM1

dz0
> 0 if:

lnλ− (λ− 1)

λ2Λ
> 0, (26)

where Λ = ϑI

λ(1+ϑI)−1
is the production labor’s share of income along the BGP.

Proof. See Appendix B.2.

Proposition 3 summarizes the key insights of this paper. It states that if the condition

in Equation 26 is satisfied, the measure of aggregate misallocation goes up next period

after an unanticipated reduction in entrant innovation rate. The condition ensures that the

weights αj at each quality gap would increase in magnitudes such that the changes in mass

of firms at non-unitary quality gaps are weighted more. Condition 26 would hold if the

BGP features a high production labor’s share of income (and correspondingly, a low level of
11Follows from Corollary 2, υt(∆) is a pmf at each quality gap, then for all t it must be the case that:

−dυt+1(1) =

∞∑
j=2

dυt+1(j).
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average markups). This implies that the rate of entrant innovation needs to be sufficiently

high relative to the rate of incumbent innovation along the BGP, a condition we find to be

empirically relevant (Akcigit and Kerr, 2018). It follows that the magnitude of the weighted

reduction in mass of varieties with unit quality gap would be smaller than the magnitude

of the weighted sum of all the other varieties with quality gaps larger than one such that

misallocation measure at time 1 would go up.

Graphically, as shown in Figure 1a, following a one time adverse shock to rate of entrant’s

innovation at time 0, mass of firms at unit quality gap decreases, while masses of firms at all

quality gaps greater than one increase at time 1. Figure 1b shows the graphical representation

of change in misallocation measure the next period following the one time shock to entrant’s

innovation as weighted changes in mass of varieties. Recall that all weights are negative,

then at unit quality gap, the positive weighted change in mass of varieties implies that

M1 would increase (and that misallocation measure would decrease), whereas at all other

quality gaps, the negative weighted changes in mass implies that M1 would decrease (and

that misallocation measure would go up). On net, misallocation measure would increase

if condition (26) holds, and that the sum of the areas is negative, i.e., aggregate allocative

efficiency would fall. The greater is the absolute sum, the higher would be the fall in aggregate

allocative efficiency following a percentage point reduction in z0.
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Figure 1: Changes in distribution from time 0 to time 1 after an unanticipated negative
shock to entrant innovation rate

(a) Changes in distribution of varieties (b) Change in allocative efficiency

Proposition 4 provides the necessary and sufficient condition for allocative efficiency to

fall following a one-time percentage point reduction in rate of entrant’s innovation.

Proposition 4. Consider an economy along the balanced growth path. At time 0, there is

an unanticipated negative shock to entrant innovation rate, zt, that is, dzt < 0. Aggregate

allocative efficiency at time 1 would fall, if and only if condition 27 is satisfied, that is,

d logM1

dz0
> 0 if and only if:

(
lnλ+

λ−1

Λ

)
κ1 < (lnλ)κBS⋆

I +
κB

Λ
S⋆
λ (27)

where κ1, κB, Λ, S⋆
I , and S⋆

λ are all positive and defined in Equation 96.

Proof. See Appendix B.2.
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The necessary and sufficient condition is derived by rewriting the changes in masses of

firms at each quality gap dυt+1(j) as the product of coefficient κj and the unanticipated

shock to entrant innovation rate dzt. Then as long as the weighted changes in masses of

firms at each quality gap satisfies |α1κ1| < |
∑∞

j=2 αjκj|, then this would imply that the

changes in mass of firms at non-unitary quality gaps are weighted more than those of firms

at unit quality gap. Hence, allocative efficiency at time 1 would fall following a reduction in

entrant innovation rate at time 0.

2.8 Misallocation effects of Monetary Policy

We study a special case of the model to analytically present the misallocation effects of

monetary policy. Consider an economy along the balanced growth path. We assume that

central bank can perfectly stabilize production labor Lp at the long-run level L̄p period 1

onwards. Furthermore, nominal wages evolve according to following wage rigidity equation,

as in Benigno and Fornaro (2018):

Wt = πwWt−1,

where πw > 0 is a constant.

There is a one-time unanticipated increase in nominal interest rate i0, after which the

nominal interest rate returns back to the level consistent with satisfying full employment

in the production sector. We can then show that entrant innovation falls on impact, and

consequently there are misallocation effects in the following period.

Proposition 5. Consider an economy along the balanced growth path. At time 0, there is
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an unanticipated increase in nominal interest rate. di0 > 0. Suppose further that the central

bank restores full employment in production sector from t ≥ 1, such that d log(Lt − δzz
ζz
t ) =

0 ∀t ≥ 1. Entrant innovation rate falls if (1) σ > 1, (2) condition in proposition 4 is satisfied.

That is dz0
di0

< 0.

Proof. See Appendix B.3.

Proposition 5 constructs the misallocation effects by enabling the contractionary mon-

etary shock to lower entrant innovation with σ > 1 assumption, i.e., low inter-temporal

elasticity of substitution. The second requirement that proposition 4 be satisfied guarantees

the connection to increased misallocation from lower entry rate.

However, note that the quantitative import of this misallocation channel may be limited

as discussed in the following corollary.

Corollary 3. It follows that there exits two counteracting forces - a level effect and a dis-

persion effect for the distribution of markups - such that the misallocation effect of monetary

policy is muted. That is:

d logM1 = (αm − αλ)dz0,

where dz0 = −
(

1

αλ+
σ(ζz−1)

z

)
d log(1+ i0). αm > 0 measures the dispersion effect, and αλ > 0

measures the level effect. They are defined respectively in equation 109.

Proof. See Appendix B.3.

Misallocation effect of a monetary policy shock depends on the conditional movements
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of real wage and production labor’s share of income as shown in Equation 28.

Mt+1 =
exp(mt+1)

Λt+1

=
exp(−(lnλ)

∑∞
∆=1 ∆υt+1(∆))∑∞

∆=1 λ
−∆υt+1(∆)

=
wt+1

Λt+1

, (28)

where wt+1 is the real wage, and Λt+1 =
(Lt−δzz

ζz
t+1)wt+1

yt+1
is the production labor’s share of

income. Notice that market power not only leads to allocative inefficiency through an increase

in markup dispersion, it also distorts factor prices, in this case wages, relative to their social

marginal product through a reduction in labor demand. Unlike Mt, Λt only depends on the

level of markups, and can be interpreted as a labor wedge.

Our baseline model generates conditionally pro-cyclical movements in both the real wage

and the production labor’s share of income, and the counteracting forces attenuate the mis-

allocation effects. Specifically, following a contractionary monetary policy shock, entrant’s

innovation rate zt declines, it follows that the measure of firms at unit quality gap υt+1(1)

falls, whereas the measures of firms at all other quality gaps rise. The distribution of markups

expands, giving rise to two effects simultaneously. A dispersion effect occurs as markup dis-

persion rises, leading to more misallocation (Mt decreases). A level effect occurs as the

production labor’s share of income decreases, since the average level of markups inevitably

rises and the labor wedge widens (Λt decreases, pushing Mt up).

In other words, a conditionally counter-cyclical movement in the average markup (pro-

cyclical movement in the production labor’s share of income) acts as an opposing force to the

misallocation effect of monetary policy that arises from the increase in markup dispersion.

As a result of the counteracting forces, the quantitative importance of the mechanism we

highlight is limited. That said, our results suggest that the strength of the misallocation
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effects of monetary policy hinges on the conditional movements of both the first moment

(level) and the second moment (dispersion) of markup distribution.12

Graphically, Figure 2 shows the modelled impulse responses of the nominal interest rate,

the entrant innovation rate, the production labor, the measure of aggregate misallocation,

the real wage, and the production labor’s share of income following a one-time contractionary

monetary policy shock in period 0. The central bank fully restores the employment level of

the production labor from period 1 onwards. Entrant’s innovation rate decreases following

the monetary contraction, it follows that the allocative efficiency falls as the markup distri-

bution becomes more dispersed. The response is persistent yet muted. Since as the markup

distribution becomes more dispersed, the average level of markups also rises, and the pro-

duction labor’s share of income falls. The level effect of the conditionally counter-cyclical

markups strongly attenuates the misallocation effect arising from the increase in markup

dispersion.
12There is an active debate on whether or not price-cost markups are indeed counter-cyclical conditional

on a monetary shock. In a textbook new Keynesian model with sticky prices (Galí, 2015), level of markups
increases in response to a contractionary monetary policy shock, i.e., markups are counter-cyclical conditional
on a monetary policy shock. Nekarda and Ramey (2020) provide empirical evidence that suggests a pro-
cyclical movement of markups. Likewise, Cantore, Ferroni and León-Ledesma (2021) find that the labor share
of income increases in response to a monetary tightening, thus a counter-cyclical labor share of income.
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Figure 2: Model-based impulse response to a one-time monetary policy shock

Notes: The figure shows the impulse responses of the nominal interest rate, entrant innovation rate, produc-
tion labor, the measure of misallocation, real wage, and the production labor’s share of income to a one-time
contractionary monetary policy shock at time 0. The central bank fully stabilizes the production labor from
time 1 onwards.

We noted earlier that the sufficient condition for the misallocation effects of monetary

policy is that the economy has a sufficiently high entrant’s innovation rate relative to in-

cumbent’s innovation rate. This implies a steady state with a high density of firms at the

unitary quality gap and lower steady state level of average markup. In Proposition 6, we

summarize the state-dependency of the misallocation effect. We find that the misallocation

effect appears stronger when there is a low density of firms at the unitary quality gap in

the steady state. The intuition is: when there are very few firms at the unitary quality gap,

a contractionary monetary policy shock deters firm entry, which in turn would cause the

markup distribution to shift further to the right. The increase in dispersion, and hence the

misallocation effect, appears stronger when the initial distribution has a fatter right tail. At

the same time, the misallocation effect appears stronger when the economy starts from a low
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level of average markups.

Proposition 6. Consider an economy along the balanced growth path. At time 0, there is an

unanticipated increase in nominal interest rate di0 > 0. Suppose further that the central bank

restores full employment in production sector from t ≥ 1. The elasticity of the misallocation

measure with respect to the density of firms with unitary quality gap is negative, whereas

the elasticity with respect to the production labor’s share of income is positive. That is,

∂(αm−αλ)
∂υ(1)

< 0, and ∂(αm−αλ)
∂Λ

> 0.

Proof. See Appendix B.4.

In steady state, it can be easily shown that both Λ and υ(1) are increasing in entrant’s

innovation rate z. Yet the increases in both Λ (hence a reduction in average markup) and

υ(1) following an increase in steady sate entrant’s innovation exert counteracting forces on

the elasticity of the misallocation measure. As such, whether the misallocation effect is

stronger with a higher rate of steady state entrant’s innovation is ambiguous. Note that a

caveat to these exercises is that the initial conditions are functions of the deep parameter of

the model.

To understand whether a higher entrant innovation rate in the steady state is associated

with a stronger misallocation effect requires a breakdown of the dispersion and the level

effect at different rates of steady state entrant’s innovation. At a very low level of entrant

innovation rate with few firms sitting on the unitary quality gap, the dispersion effect, as

noted earlier, is strong in response to a fall in firm entry. However, the overall misallocation

effect also depends on the change in the level of markups. It turns out that if the level effect

is also strong as the distribution becomes increasingly dispersed, average markup would
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increase fast. These two effects counteract each other and give rise to a muted misallocation

response. In contrast, at a high level of steady state entrant’s innovation, there are a high

density firms at the unitary quality gap, a fall in firm entry would not shift the distribution

much to the right, resulting in a weakened dispersion effect. If the level effect is in turn

weakened in response to the slight right-shift in the distribution, then the misallocation

effect would strengthen if the level effect is weakened to a greater extent.

To further investigate which effect dominates, in Figure 3 we graphically show how the

misallocation effect varies with respect to the steady state level of entrant’s innovation,

conditioning on incumbent innovation rate. In particular, we show that while the level effect

αλ weakens monotonically as entrant’s innovation rises, the dispersion effect αm is stronger

at both very low level of entrant’s innovation and very high level; even though the dispersion

effect is strongest at the lower end. That said, the dispersion effect nevertheless dominates

in magnitudes and the misallocation effect intensifies as we increase the steady state level

of entrant innovation. In a steady state with higher rate of creative destruction relative to

incumbent innovation, the misallocation effect of monetary policy is greater,
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Figure 3: State-dependent misallocation effect of monetary policy

Notes: The figure shows the state-dependent misallocation effect of monetary policy with respect to the
steady state rates of entrant’s innovation. It breaks down the misallocation effect into a dispersion effect
and a level effect. Calibration is discussed in Table 1.

To summarize, at the core of the mechanism is that a contractionary monetary policy

shock reduces allocative efficiency across firms through reducing entrant’s innovation rate

relative to that of the incumbent. In particular, this misallocation effect induced by the

asymmetrical responses is stronger if we start with a steady state with high rate of entrant

innovation relative to incumbent innovation. A reduction in entrant innovation would push

up markup dispersion if there is incumbent innovation at the same time. In our calibration,

even though the reduction in entrant innovation also pushes up the average level of markups,

exerting a counteracting force to the dispersion effect, the dispersion effect dominates, and

the overall misallocation effect is stronger when the economy starts from a high rate of

entrant innovation.
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Figure 4: Model-based impulse response to a one-time monetary policy shock

Notes: The figure shows the impulse responses of the nominal interest rate, entrant innovation rate, produc-
tion labor, the measure of misallocation, real wage, and the production labor’s share of income to a one-time
contractionary monetary policy shock.

2.8.1 Modelled Dynamic Responses

Proposition 5 is a special case that can be analytically solved, to further illustrate the

dynamics of the baseline model, we calibrate the model with parameters provided in Table 1.

Following a one-time contractionary monetary policy shock, Figure 4 graphically illustrates

the dynamic responses of nominal interest rate, entrant innovation rate, employment level

in the production sector, and allocative efficiency. Following a contractionary monetary

policy shock, real interest rate increases, depressing nominal wages as a result. Because of

the sticky nominal wages, aggregate demand would fall. The increase in real interest rate

combined with a reduced expectation of future aggregate demand leads to a reduction in rate

of entrant’s innovation, which translates into a lowered growth rate as incumbent’s rate of

innovation is kept unchanged. Facing a reduced probability of being displaced, incumbents
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could further move up in quality ladder and charge a higher markup with probability I,

resulting in reduced allocative efficiency.

3 Extensions and Empirical Discussion

The baseline model provides us with analytical tractability at the expense of specific as-

sumptions, such that outside entrepreneurs are only allowed to survive for one period upon

successful entry; incumbent’s innovation probability is exogenously given and is thus invari-

ant over the business cycle. Finally, the unitary demand elasticity structure assumed in the

Cobb-Douglas aggregation in the final good sector is a special case of the more general CES

demand structure. In this section, we relax each assumption and study how does each of

them affects the model.

3.1 Incorporating value functions

In the baseline model, we assume that successful entrants could only earn profits for one

period, we relax the assumption and consider instead that outside entrepreneurs’ maximiza-

tion problems takes the following form in a setting in which successful entrant can survive

to the next period as an incumbent firm:

max
zt

{Dt,t+1ztVt+1(1)− δzz
ζz
t Wt},

where Vt+1(1) is incumbent’s value function with unitary quality gap, and

Vt(1) = (1− λ−1)PtYt + Et{Dt,t+1(1− zt)[IVt+1(2) + (1− I)Vt+1(1)]}.
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The value function of outside entrepreneur now consists of two parts: (i) the profits generated

from unitary quality gap ∆ = 1, (ii) the expected profits for the next period, conditioning

on surviving creative destruction this period and increasing the existing quality gap by one

step, this happens at the exogeneous probability of own innovation I.

It turns out that incorporating value functions into entrant’s optimization problem does

not necessitate keeping track of all value functions and difference equations for each quality

gap ∆. In fact, we show in Appendix C.1 that to define the full log-linearized competitive

equilibrium we only need the value function at the unitary quality gap Vt(1) and the dif-

ference in value functions at ∆ = 2 and the unitary quality gap, dVt(1) ≡ Vt(2) − Vt(1).

Figure 5 graphically illustrates the dynamic responses of the key variables in the model to a

contractionary monetary policy shock. As expected, the dynamic response of entrant’s inno-

vation rate is slightly muted relative to the baseline model, as now outside entrepreneurs are

able to retain their patent and continue to innovate upon successful entry. Otherwise, in-

corporating value functions into entrant’s decision does not materially change the properties

of the baseline model. Allocative efficiency still falls as a result of the decline in entrant’s

innovation when the incumbents continue to innovate.

3.2 Endogenizing incumbent’s innovation

We assumed that rate of incumbent innovation I was exogenous and thus unaffected by

monetary policy shocks in the baseline model. Consider instead that incumbents are allowed

to optimally choose their rates of own innovation It(∆) by hiring R&D labor to continue
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increasing their relative quality. Incumbents’ maximization problems can be written as:

max
It(∆)

{
(1− λ−∆)PtYt + EtDt,t+1(1− zt)[ItVt+1(∆ + 1) + (1− It)Vt+1(∆)]− c(It,∆)Wt

}
,

where c(It,∆) denotes costs of own innovation in units of R&D labor hired. To make

analytical progress in solving the more general case, we follow Peters (2020) to assume a

particular functional form for the cost function such that

c(It,∆) = λ−∆δIIt(∆)ζI , ζI > 1,

where δI determines the efficiency of own innovation, and ζI > 1 ensures convexity of the

cost function such that there exists a unique solution. Solving incumbent’s maximization

problems give the optimal rate of own innovation:

I∗t (∆) =

βEt
y−σ
t+1

y−σ
t

g1−σ
t+1 [Ṽt+1(∆ + 1)− Ṽt+1(∆)]

ζIλ−∆δIwt


1

ζI−1

, (29)

where Ṽt+1(∆) is the normalized value function for each ∆. As N̄ → ∞, we show in Appendix

C.2 that the optimal rate of own innovation is independent of quality gap such that the

aggregate own innovation is I∗t = I∗t (∆)∀∆. However, for a finite N̄ , the optimal own

innovation depends on quality gap and the aggregate own innovation I∗t is the expected

value of I∗t (∆) across the distribution of quality gaps. Endogenizing incumbent’s innovation

alters difference equations 4 - 6 by introducing a time subscript to the rate of own innovation

I, and now the optimal own innovation rate depends on existing quality gaps. The evolution
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of the distribution of quality gaps is now determined by the counteracting forces of entrant’s

innovation and incumbents’ continuing innovation. These two counteracting forces - entrant

innovation compressing the distribution, whereas incumbents’ own innovation expanding it -

shape the evolution of the cross-sectional distribution of markups, such that it endogenously

responds to business cycle shocks.

In Figure 6 of Appendix C.2, we graphically illustrate the dynamics of the model subject

to a contractionary monetary policy shock. Both entrant and incumbent innovation rates fall

as the monetary contraction leads to a reduction in the expected future aggregate demand;

notably the former falls by a greater extent. This muted responsiveness of incumbent inno-

vation is at the heart of the mechanism we propose: a contractionary monetary policy shock

reduces allocative efficiency across firms by reducing entrant innovation rate more relative

to the reduction in incumbent innovation it causes.

3.3 CES demand function

We had assumed that household’s preferences take a particular form of unitary elasticity

in the baseline model, now we relax the assumption to study the case with a general CES

demand structure:

Yt =

(∫ 1

0

x
η−1
η

it di

) η
η−1

, η > 1. (30)

With CES demand, firms with quality gaps that are sufficiently large will find it optimal

to charge the unconstrained markup η
η−1

instead of the limit price. The distribution of
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markups is thus truncated at a finite quality gap. It follows that

µit(∆) = min

{
η

η − 1
, λ∆

}
. (31)

Aggregate output can thus be rewritten as

Yt = QtLptMt, where Mt ≡

[∫ 1

0
µ1−η
it

(
qit
Qt

)η−1

di

] η
η−1

∫ 1

0
µ−η
it

(
qit
Qt

)η−1

di
, (32)

where Qt ≡ (
∫
qη−1
it di)

1
η−1 is a measure of technical efficiency, while Mt is a measure of

allocative efficiency in the economy.

The entrant’s optimization problem implies:

βEt

[
Y −σ
t+1

Y −σ
t

Pt

Pt+1

Φi,t+1(1, qi,t+1)

]
= ζzδzz

ζz−1
t Wt, (33)

where Φi,t+1(1, qi,t+1) =
(
1− 1

λ

)
λ1−ηEi

[
qi,t+1

W̃t+1

]η−1

Pt+1Yt+1 is the per periods profit function

for a successful entrant that produces a variety with unitary markup and quality qi,t+1, and

real wages is given by W̃t ≡ Wt

Pt
=
[∫ 1

0
µ1−η
it qη−1

it di
] 1

η−1 .

Similar to the baseline case, we assume that incumbent’s own innovation occurs at an

exogenous probability I, this simplifies the analysis as now the marginal distributions of

quality gaps ∆ and quality q are independent such that: Ft(∆, q) = F∆,t(∆)Fq,t(q). Since

markups only depend on ∆, it follows that the distribution of markups is independent of the

distribution of q, and that the evolution of quality gaps are governed by the same difference

equations 4 - 6. We show in Appendix C.3 that the optimal rate of entry zt is independent
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of q, and in the special case η = 1, the model collapses to the baseline case. Since zt

alone determines the evolution of quality gaps, it follows that the measure of aggregate

misallocation is pinned down by the distribution of quality gaps:

Mt ≡
[∫

µ1−η
it di

] η
η−1∫

µ−η
it di

=

[∑N̄
∆=1 µ(∆)1−ηυt(∆)

] η
η−1∑N̄

∆=1 µ(∆)−ηυt(∆)
. (34)

The main insight from the baseline case is preserved in the more general setup, as the

distribution of quality gaps alone determines allocative efficiency.

In Figure 7 of Appendix C.3, we show the dynamic responses of key variables in the

extended model following a contractionary monetary policy shock. Allocative efficiency falls

as a result of the decline in entrant’s innovate rate as in the baseline model, and the impulse

responses are somewhat amplified with the introduction of the CES demand.

3.4 Empirical Discussion

Finally, we briefly discuss the empirical evidence from the literature that is consistent with

the mechanism we presented, namely that monetary policy shocks can increase misallocation.

Meier and Reinelt (2022) document that contractionary U.S. monetary policy shocks increase

inter-sectoral markup dispersion across firms in the Compustat data. Garga and Singh

(2021, Online Appendix) find that contractionary monetary policy shocks reduce firm entry,

but do not significantly affect R&D expenditures of the U.S. listed firms, which we take

as a proxy for incumbent innovation. Similarly, numerous studies document that aggregate

productivity declines in response to contractionary monetary shocks (see, for example, Moran

and Queralto, 2018).
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Taken together, these previous empirical findings suggest that a tightening of monetary

policy does not affect own innovation of the established incumbents as much as it affects

the innovation efforts of the potential entrants. As a result, a monetary tightening lowers

firm entry, and at the aggregate, lowers productivity. We view the empirical findings as

providing suggestive evidence in support of our proposed mechanism, in particular that a

contractionaty monetary policy shock reduces allocative efficiency across firms through a

greater reduction of entrant innovation relative to incumbent innovation.

4 Conclusion

In this paper, we propose a novel misallocation channel of monetary policy that operates on

the extensive margin of firm entry and incumbent’s own innovation. We add to a standard

business-cycle framework that incorporates endogenous growth a simple modification: in

addition to allowing entrants to undertake R&D investment to displace incumbents via

the traditional channel of creative destruction, we allow incumbent firms to engage in own

innovation of their existing products to increase their markups as long as they remain active

(Peters, 2020).

We show theoretically that a contractionary monetary policy shock leads to a reduction

of outside entrepreneurs’ R&D efforts such that the traditional force of creative destruction

is weakened. Importantly, we find that as long as the incumbent R&D is affected to a

lesser extent by a monetary tightening, such that the average incumbent innovation remains

largely unchanged over the business cycles, this reduction in entrant’s innovation would

push up both the average level and the dispersion of the markup distribution. Sectors where
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incumbents continue innovate, see their product market power goes up. This implies that

the propagation of an adverse business shock shock over time generates a more dispersed

cross-sectional distribution of markups, resulting in an endogenous short-term misallocation

of inputs across firms.
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A Competitive equilibrium

A.1 Definition

Definition A.1 (Competitive Equilibrium). For a given finite N̄ , the competitive equilib-

rium is defined as a sequence of (7+N̄) quantities {gt+1, zt, Lt, Yt, {υt+1(i)}N̄i=1,mt+1,Λt+1,Mt+1}∞t=0

and 4 prices {Pt, it,Wt, Dt,t+1} satisfying the following (11 + N̄) equations, for a given se-

quence of exogenous shocks {ϵmt }, and initial conditions are given by {Q0, P0, {υ0(i)}N̄i=1},

and Lt ≤ 1 for all t ≥ 0.

1. Consumption Euler Equation and Stochastic Discount Factor

1 = βEt

[
Y −σ
t+1

Y −σ
t

Pt

Pt+1

(1 + it)

]
(35)

Dt,t+1 = βEt

[
Y −σ
t+1

Y −σ
t

Pt

Pt+1

]
(36)

2. Outside Entrepreneur’s Innovation Decision

Dt,t+1(1− λ−1)Et[Pt+1Yt+1] = ζzδzz
ζz−1
t Wt (37)

3. Wage Rigidity

Wt = πwWt−1 (38)

Pt =
Wt

Qt exp{mt}
(39)

4. Technical Efficiency Growth Rate

gt+1 =
Qt+1

Qt

= (zt + I − ztI)(λ− 1) + 1 (40)
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5. Measure of Aggregate Misallocation

mt+1 = −Ei[lnµi,t+1] = −
∫ 1

0

lnµi,t+1di = −(lnλ)
N̄∑

∆=1

∆υt+1(∆) (41)

Λt+1 = Ei[µ
−1
i,t+1] =

∫ 1

0

µ−1
i,t+1di =

N̄∑
∆=1

λ−∆υt+1(∆) (42)

Mt+1 =
exp(mt+1)

Λt+1

=
exp(−(lnλ)

∑N̄
∆=1∆υt+1(∆))∑N̄

∆=1 λ
−∆υt+1(∆)

(43)

6. Market Clearing Conditions and Aggregate Production Function

Yt = QtLptMt = Qt(Lt − δzz
ζz
t )Mt (44)

7. Monetary Policy Rule

1 + it = (1 + iss)

(
Lt − δzz

ζz
t

Lss − δzz
ζz
ss

)ϕ

ϵmt , ϕ > 0 (45)

8. Evolution of Quality Gaps

υt+1(∆) = zt + (1− zt)(1− I)υt(∆) if ∆ = 1 (46)

υt+1(∆) = (1− zt)(1− I)υt(∆) + (1− zt)Iυt(∆− 1) if 2 ≤ ∆ ≤ N̄ − 1 (47)

υt+1(∆) = (1− zt)υt(∆) + (1− zt)Iυt(∆− 1) if ∆ = N̄ (48)

where {υt+1(∆)}N̄∆=1 denote the measure of varieties with quality gap ∆ at time t. As

N̄ → ∞, equation 48 will be dropped.

Stationarization of the System. The competitive equilibrium defined above is non-

stationary: output and nominal wage are co-integrated with technical efficiency Qt. We
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normalize them as follows:

yt ≡
Yt

Qt

;wt ≡
Wt

PtQt

.

Definition A.2 (Normalized Competitive Equilibrium). The normalized competitive equi-

librium is defined as a set of (7+ N̄) stationary quantities {gt+1, zt, Lt, yt, {υt+1(i)}N̄i=1,mt+1,

Λt+1,Mt+1}∞t=0 and 3 stationary prices {Πt, it, wt} satisfying the following (10 + N̄) equa-

tions, for a given sequence of exogenous shocks {ϵmt }, and initial conditions are given by

{Q0, P0, {υ0(i)}N̄i=1}, and Lt ≤ 1 for all t ≥ 0.

1. Consumption Euler Equation

y−σ
t = βEt

[
y−σ
t+1g

−σ
t+1

(1 + it)

Πt+1

]
(49)

2. Outside Entrepreneur’s Innovation Decision

βEt

[
c1−σ
t+1 g

1−σ
t+1

c−σ
t

]
(1− λ−1) = ζzδzz

ζz−1
t wt (50)

3. Wage Rigidity

wt = exp

{∫ 1

0

lnµ−1
it di

}
= exp(mt) (51)

Πt =
Pt

Pt−1

= πwg−1
t

wt−1

wt

(52)

4. Technical Efficiency Growth Rate

gt+1 =
Qt+1

Qt

= (zt + I − ztI)(λ− 1) + 1 (53)

5. Measure of Aggregate Misallocation

The three equations that govern {mt+1,Λt+1,Mt+1} are give by Equations 41 - 43.
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6. Market Clearing Conditions and Aggregate Production Function

yt = LptMt = (Lt − δzz
ζz
t )Mt (54)

7. Monetary Policy Rule

1 + it = (1 + iss)

(
Lt − δzz

ζz
t

Lss − δzz
ζz
ss

)ϕ

ϵmt , ϕ > 0 (55)

8. Evolution of Quality Gaps

The remaining N̄ equations that govern state variables {υt+1(i)}N̄i=1 are give by Equations

46 - 48.

A.2 Derivation of markup distribution

Limiting case. We first consider the limiting case with N̄ → ∞ for distribution of quality

gaps {υt(∆)}∞∆=1, in steady state, we have υt+1(∆) = υt(∆)∀∆, Equations 46 and 47 imply

that

υ(∆) =

[
(1− z)I

z + (1− z)I

]∆
z

(1− z)I
=

[
1

1 + z
(1−z)I

]∆
z

(1− z)I
=

(
1

1 + ϑI

)∆

ϑI ,

where ϑI =
z

(1−z)I
. It can then be shown that P(∆ ≤ d) = 1−( 1

1+ϑI
)d = 1−e− ln(1+ϑI)×d. This

in turn implies that lnµ = ∆ lnλ is exponentially distributed with parameter θ = ln(1+ϑI)
lnλ

.

That is P(λ∆ ≤ µ) = 1− µ−θ. Given the distribution for µ, we can show that

Λ =
∞∑
i=1

λ−iυ(i) =
ϑI

λ(1 + ϑI)

∞∑
i=0

(
1

λ(1 + ϑI)

)i

=
ϑI

λ(1 + ϑI)− 1
,

M =
e− lnλ(

∑∞
i=1 iυ(i))

Λ
=

(
λ
− 1+ϑI

ϑI

)(
λ(1 + ϑI)− 1

ϑI

)
,
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since
∑∞

i=1 iυ(i) = ϑI

∑∞
i=1 i

(
1

1+ϑI

)i
= 1+ϑI

ϑI
.

Finite markup case. We then consider the special case with finite upper limit N̄ such

that ∆ = 1, 2, ..., N̄ , in steady state, we have υt+1(∆) = υt(∆)∀∆, Equations 46 and 47

likewise imply that υ(∆) =
(

1
1+ϑI

)∆
ϑI for ∆ ∈ {1, 2, ..., N̄ − 1}, where ϑI = z

(1−z)I
. From

Equation 48, it can be shown that in steady state υ(N̄) =
(

1
1+ϑI

)N̄−1

.

Probability mass function. In steady state, {υ(∆)}N̄∆=1 is a probability mass function of

the quality gaps ∆ ∈ {1, 2, ..., N̄}. This is because 1−
∑N̄−1

i=1 υ(i) = 1− ϑI

1+ϑI

∑N̄−2
i=0

(
1

1+ϑI

)i
=(

1
1+ϑI

)N̄−1

= υ(N̄) such that
∑N̄

∆=1 υ(∆) = 1, and ∀∆ ∈ {1, 2, ..., N̄}, υ(∆) > 0.

Distribution of markups for finite case. Analogous to the infinite case, It can then be

shown that for 1 ≤ ∆ ≤ N̄ − 1, P(∆ ≤ d) = 1 − ( 1
1+ϑI

)d = 1 − e− ln(1+ϑI)×d. This in turn

implies that lnµ = ∆ lnλ is exponentially distributed with parameter θ = ln(1+ϑI)
lnλ

. That is:

F (µ,∆) = P(λ∆ ≤ µ) =


1− µ− ln(1+ϑI )

lnλ , if ∆ = 1, 2, ..., N̄ − 1

1, if ∆ = N̄

Steady state misallocation measure. We can thus derive steady state misallocation

measure MN̄ as follows:

ΛN̄ =
N̄−1∑
i=1

λ−iυ(i) + λ−N̄υ(N̄) =
ϑI

λ(1 + ϑI)

N̄−2∑
i=0

(
1

λ(1 + ϑI)

)i

+ λ−N̄

(
1

1 + ϑI

)N̄−1

=
ϑI

λ(1 + ϑI)− 1

(
1−

(
1

λ(1 + ϑI)

)N̄−1
)

+ λ−N̄

(
1

1 + ϑI

)N̄−1

Similarly,
∑N̄

i=1 iυ(i) = ϑI

∑N̄−1
i=1 i

(
1

1+ϑI

)i
+N̄υ(N̄) = ϑI

[
ϕI(1−ϕN̄−1

I )

(1−ϕI)2
− (N̄−1)ϕN̄

I

1−ϕI

]
+N̄

(
1

1+ϑI

)N̄−1

,
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where ϕI ≡ 1
1+ϑI

, let ΞN̄ ≡
∑N̄

i=1 iυ(i), such that mt = −Ξ(lnλ). Finally, we have

MN̄ =
λ−ΞN̄

ΛN̄

, where ΞN̄ = ϑI

[
ϕI(1− ϕN̄−1

I )

(1− ϕI)2
− (N̄ − 1)ϕN̄

I

1− ϕI

]
+ N̄(

1

1 + ϑI

)N̄−1.

It can be easily shown that MN̄ → M as N̄ → ∞.

A.3 Steady States

Limiting case. As N̄ → ∞, the balanced growth path (BGP) for the economy are char-

acterized by constant values for technical efficiency growth rate g, probability of successful

entry z, employment L, normalized output y, and price inflation Π satisfying:

gσ =
β(1 + i)

Π
(56)

βg1−σ(1− λ−1)(L− δzz) = ζzδzz
ζz−1Λ, where Λ =

ϑI

λ(1 + ϑI)− 1
, ϑI =

z

(1− z)I
(57)

Π =
πw

g
(58)

g = (z + I − zI)(λ− 1) + 1 (59)

y = (L− δzz
ζz)M, where M =

(
λ
− 1+ϑI

ϑI

)(
λ(1 + ϑI)− 1

ϑI

)
(60)

The five equations are (i) household’s Euler equation, (ii) outside entrepreneur’s innovation

decision, (iii) wage rigidity equation, (iv) growth rate of technical efficiency, and (v) resource

constraint.

Finite markup case. For any given N̄ , the balanced growth path (BGP) for the economy

are characterized by constant values for technical efficiency growth rate g, probability of
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successful entry z, employment L, normalized output y, and price inflation Π satisfying:

gσ =
β(1 + i)

Π
(61)

βg1−σ(1− λ−1)(L− δzz) = ζzδzz
ζz−1ΛN̄ , where (62)

ΛN̄ =
ϑI

λ(1 + ϑI)− 1
(1− (

1

λ(1 + ϑI)
)N̄−1) + λ−N̄(

1

1 + ϑI

)N̄−1, ϑI =
z

(1− z)I

Π =
πw

g
(63)

g = (z + I − zI)(λ− 1) + 1 (64)

y = (L− δzz
ζz)MN̄ , where (65)

MN̄ =
λ−ΞN̄

ΛN̄

, where ΞN̄ = ϑI [
ϕI(1− ϕN̄−1

I )

(1− ϕI)2
− (N̄ − 1)ϕN̄

I

1− ϕI

] + N̄(
1

1 + ϑI

)N̄−1, ϕI =
1

1 + ϑI

The five equations are (i) household’s Euler equation, (ii) outside entrepreneur’s innovation

decision, (iii) wage rigidity equation, (iv) growth rate of technical efficiency, and (v) resource

constraint.

A.4 Log-linearized equilibrium

Finite markup case. The limiting case is summarized in Section 2.5 of the main text, for

the special case with N̄ < ∞, we define the log-linearized competitive equilibrium as follows:

Definition. For a given finite N̄ , the log-linearized competitive equilibrium of the economy

is defined as a sequence of variables {d log yt, d log gt+1, dzt, dit, dLt, d log Πt, {dυt+1(∆)}N̄∆=1,

dmt+1, d logMt+1} that satisfy the following 8+ N̄ equations, for a given sequence of exoge-

nous shocks {d log ϵmt } and given initial values of state variables {{dυ0(∆)}N̄∆=1, dm0, d logM0}.

Consumption Euler equation

−σd log yt = −σEtd log yt+1 − σd log gt+1 + d log(1 + it)− dEt log Πt+1 (66)
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Entrant’s innovation decision

[σd log yt − σEtd log yt+1 − σd log gt+1] + Etd log yt+1 + d log gt+1 = dmt +
ζz − 1

z
dzt (67)

Wage rigidity equation

d log Πt = −d log gt + dmt−1 − dmt (68)

Technical efficiency growth equation

d log gt+1 =
(λ− 1)(1− I)

(z + I(1− z))(λ− 1) + 1
dzt (69)

Measure of aggregate misallocation

dmt+1 = −(lnλ)
N̄∑

∆=1

∆dυt+1(∆) (70)

d logMt+1 =

[(
− lnλ− λ−1

Λ

)
κA + (lnλ)κBSI +

κB

Λ
Sλ −

(
−(lnλ)N̄ − λ−N̄

Λ

)
κC

]
dzt

+ f

(
N̄∑

∆=1

dυt(∆)

)
, where (71)

κA ≡ 1− (1− I)υ(1), κB ≡ 1

1− z
, κC ≡ κBυ(N̄),

SI ≡
N̄−1∑
∆=2

∆υ(∆) = ϑI

[
ϕI(1− ϕN̄−1

I )

(1− ϕI)2
− (N̄ − 1)ϕN̄

I

1− ϕI

]
− ϑI

1 + ϑI

, ϑI ≡
z

(1− z)I
, ϕI ≡

1

1 + ϑI

,

Sλ ≡
N̄−1∑
∆=2

λ−∆υ(∆) =
ϑI

λ(1 + ϑI)− 1

[
1−

(
1

λ(1 + ϑI)

)N̄−1
]
− λ−1 ϑI

1 + ϑI

.
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Resource constraint

d log yt = d log(Lt − δzz
ζz
t ) + d logMt (72)

Monetary policy rule

d log(1 + it) = ϕd log(Lt − δzz
ζz
t ) + d log ϵmt , ϕ > 0, it > 0 (73)

Evolution of quality gaps (N̄ equations)

dυt+1(∆) =



[1− (1− I)υ(∆)]dzt + (1− z)(1− I)dυt(∆) if ∆ = 1,

[−(1− I)υ(∆)− Iυ(∆− 1)]dzt+

(1− z)(1− I)dυt(∆) + (1− z)Idυt(∆− 1) if 2 ≤ ∆ ≤ N̄ − 1,

[−υ(∆)− Iυ(∆− 1)]dzt + (1− z)dυt(∆) + (1− z)Idυt(∆− 1) if ∆ = N̄ ,

(74)

where υ(∆) = ( 1
1+ϑI

)∆ϑI , and ϑI =
z

(1−z)I
for ∆ ≤ N̄ − 1, and υ(N̄) = ( 1

1+ϑI
)N̄−1.

Relative to the limiting case, the finite markup case requires keeping track of the evo-

lution of the quality gaps. The consumption euler equation is the log-linearized version

of household’s inter-temporal utility maximization condition; the entrant’s innovation deci-

sion is the log-linearized transformation of outside entrepreneur’s maximization condition;

the wage rigidity equation is the log-linearized version of price inflation; technical efficiency

growth equation summarizes how does percentage changes in rate of entrant’s innovation

translate into growth rate of technical efficiency. Resource constraint and monetary pol-

icy rule are obtained from log-linearizing their counterparts in the normalized competitive

equilibrium, respectively.

Finally, the misallocation block with the aggregate misallocation measure and the evolu-

tion of quality gaps (eqns 70 - 71 and eqn 74, respectively), both of which are log-linearized
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transformation of the misallocation measure and evolution of masses at each quality gap

around the steady state. In particular, Equation 71 shows how a percentage change in rate

of entrant’s innovation could translate into changes in measure of aggregate misallocation

through the evolution of the distribution of varieties with different quality gaps as governed

by Equation 74.

B Theoretical Derivation

B.1 Derivation of the log-linearized equilibrium

Log-linearization of the finite case. Endogenous variables: yt, Lt, zt, gt+1, it,Πt,mt+1,Mt+1,

{υt+1(∆)}N̄∆=1

Consumption Euler equation

−σd log yt = −σEtd log yt+1 − σd log gt+1 + d log(1 + it)− dEt log Πt+1 (75)

Outside entrepreneur’s innovation decision

[σd log yt − σEtd log yt+1 − σd log gt+1] + Etd log yt+1 + d log gt+1 = dmt +
ζz − 1

z
dzt (76)

Wage rigidity equation

d log Πt = −d log gt + dmt−1 − dmt, where (77)

Growth rate of technical efficiency

d log gt+1 =
(λ− 1)[(1− I)dzt + (1− z)dIt]

(z + I(1− z))(λ− 1) + 1
(78)
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Resource constraint

d log yt = d log(Lt − δzz
ζz
t ) + d logMt, where d log(Lt − δzz

ζz
t ) =

dLt − ζzδzz
ζz−1dzt

L− δzzζz
(79)

Monetary policy rule

d log(1 + it) = ϕd log(Lt − δzz
ζz
t ) + d log ϵmt , ϕ > 0, it > 0 (80)

Evolution of quality gaps (N̄ equations)

dυt+1(∆) = [1− (1− I)υ(∆)]dzt + [−(1− z)υ(∆)]dIt + (1− z)(1− I)dυt(∆), if ∆ = 1

(81)

dυt+1(∆) = [−(1− I)υ(∆)− Iυ(∆− 1)]dzt + [(1− z)(υ(∆− 1)− υ(∆))]dIt

+ (1− z)(1− I)dυt(∆) + (1− z)Idυt(∆− 1), if 2 ≤ ∆ ≤ N̄ − 1

≡ CA(∆)dzt + CB(∆)dIt + CCdυt(∆) + CDdυt(∆− 1) (82)

dυt+1(∆) = [−υ(∆)− Iυ(∆− 1)]dzt + [(1− z)υ(∆− 1)]dIt (83)

+ (1− z)dυt(∆) + (1− z)Idυt(∆− 1), if ∆ = N̄ , (84)

where υ(∆) = ( 1
1+ϑI

)∆ϑI , and ϑI =
z

(1−z)I
for ∆ ≤ N̄ − 1, and υ(N̄) = ( 1

1+ϑI
)N̄−1.

Block of misallocation measure

d logMt+1 = dmt+1 − d log Λt+1,

where

dmt+1 = −(lnλ)
N̄∑

∆=1

∆dυt+1(∆) ≡ d logwt+1, (85)
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where wt is normalized real wage, the equation holds because wt = exp(mt), and

d log Λt+1 =
dΛt+1

Λ
=

1

Λ

N̄∑
∆=1

λ−∆dυt+1(∆),

where Λ = ϑI

λ(1+ϑI)−1

(
1−

(
1

λ(1+ϑI)

)N̄−1
)
+ λ−N̄

(
1

1+ϑI

)N̄−1

,

dmt+1 = −(lnλ)dυt+1(1)− (lnλ)
N̄−1∑
∆=2

∆[CA(∆)dzt + CB(∆)dIt + CCdυt(∆) + CDdυt(∆− 1)]

− (lnλ)N̄dυt+1(N̄)

= −(lnλ)dυt+1(1)− (lnλ){[−(1− I)SI − I(1 + ϑI)SI ] dzt + [(1− z)ϑISI ] dIt} − (lnλ)N̄dυt+1(N̄)

− (lnλ)
N̄−1∑
∆=2

∆[CCdυt(∆) + CDdυt(∆− 1)],

dΛt+1 =
N̄∑

∆=1

λ−∆dυt+1(∆)

= λ−1dυt+1(1) +
N̄−1∑
∆=2

λ−∆[CA(∆)dzt + CB(∆)dIt + CCdυt(∆) + CDdυt(∆− 1)] + λ−N̄dυt+1(N̄)

= λ−1dυt+1(1) + {[−(1− I)Sλ − I(1 + ϑI)Sλ] dzt + [(1− z)ϑISλ] dIt}+ λ−N̄dυt+1(N̄)

+
N̄−1∑
∆=2

λ−∆[CCdυt(∆) + CDdυt(∆− 1)],
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where

dυt+1(1) = [1− (1− I)
ϑI

1 + ϑI

]dzt + [−(1− z)
ϑI

1 + ϑI

]dIt + (1− z)(1− I)dυt(1),

dυt+1(N̄) =

[
−
(

1

1 + ϑI

)N̄−1

− IϑI

(
1

1 + ϑI

)N̄−1
]
dzt +

[
(1− z)ϑI

(
1

1 + ϑI

)N̄−1
]
dIt

+ (1− z)dυt(∆) + (1− z)Idυt(∆− 1),

CC = (1− z)(1− I),

CD = (1− z)I,

SI =
N̄−1∑
∆=2

∆υ(∆) = ϑI

[
ϕI(1− ϕN̄−1

I )

(1− ϕI)2
− (N̄ − 1)ϕN̄

I

1− ϕI

]
− ϑI

1 + ϑI

, where ϕI =
1

1 + ϑI

,

Sλ =
N̄−1∑
∆=2

λ−∆υ(∆) =
ϑI

λ(1 + ϑI)− 1

[
1−

(
1

λ(1 + ϑI)

)N̄−1
]
− λ−1 ϑI

1 + ϑI

.

Rewrite dmt+1, dΛt+1 in terms of dzt, dIt, {dυt(∆)}N̄∆=1:

dmt+1 =

−(lnλ)

[
1− (1− I)

ϑI

1 + ϑI

]
︸ ︷︷ ︸

κA

−(lnλ)

(
−1− z

1− z

)
︸ ︷︷ ︸

−κB

SI

−(lnλ)N̄

(
−1− z

1− z

)(
1

1 + ϑI

)N̄−1

︸ ︷︷ ︸
−κC

 dzt

+

−(lnλ)

[
−(1− z)

ϑI

1 + ϑI

]
︸ ︷︷ ︸

−κD

−(lnλ) (1− z)ϑI︸ ︷︷ ︸
κE

SI − (lnλ)N̄ (1− z)ϑI

(
1

1 + ϑI

)N̄−1

︸ ︷︷ ︸
κF

 dIt

− (lnλ)(1− z)
N̄−1∑
∆=1

∆dυt(∆)− (lnλ)(1− z)dυt(N̄)(N̄ − I)

=− (lnλ)[κA − κBSI − κCN̄ ]dzt − (lnλ)[−κD + κESI + κF N̄ ]dIt + (1− z)dmt

+ (lnλ)(1− z)Idυt(N̄)
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dΛt+1 =

λ−1

[
1− (1− I)

ϑI

1 + ϑI

]
︸ ︷︷ ︸

κA

+

(
−1− z

1− z

)
︸ ︷︷ ︸

−κB

Sλ + λ−N̄

(
−1− z

1− z

)(
1

1 + ϑI

)N̄−1

︸ ︷︷ ︸
−κC

 dzt

+

λ−1

[
−(1− z)

ϑI

1 + ϑI

]
︸ ︷︷ ︸

−κD

+(1− z)ϑI︸ ︷︷ ︸
κE

Sλ + λ−N̄ (1− z)ϑI

(
1

1 + ϑI

)N̄−1

︸ ︷︷ ︸
κF

 dIt

+ (1− z)
N̄−1∑
∆=1

[
1− I + Iλ−1

]
λ−∆dυt(∆) + λ−N̄(1− z)dυt(N̄)

=[λ−1κA − κBSλ − λ−N̄κC ]dzt + [−λ−1κD + κESλ + λ−N̄κF ]dIt

+ (1− z)

(
1− I +

I

λ

)
dΛt + (1− z)

(
I − I

λ

)
λ−N̄dυt(N̄)

Since d logMt+1 = dmt+1 − d log Λt+1,, we can rewrite d logMt+1 as:

d logMt+1 =


(
− lnλ− λ−1

Λ

)
κA︸ ︷︷ ︸

⊖

+(lnλ)κBSI︸ ︷︷ ︸
⊕

+
κB

Λ
Sλ︸ ︷︷ ︸

⊕

−

(
−(lnλ)N̄ − λ−N̄

Λ

)
κC︸ ︷︷ ︸

⊖

 dzt

+


(
− lnλ− λ−1

Λ

)
(−κD)︸ ︷︷ ︸

⊕

− (lnλ)κESI︸ ︷︷ ︸
⊕

− κE

Λ
Sλ︸ ︷︷ ︸

⊕

+

(
−(lnλ)N̄ − λ−N̄

Λ

)
κF︸ ︷︷ ︸

⊖

 dIt

+ (1− z)dmt −
(1− z)

(
1− I + I

λ

)
Λ

dΛt +

[
(lnλ)(1− z)I −

(1− z)
(
I − I

λ

)
λ−N̄

Λ

]
dυt(N̄)

(86)
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where

κA ≡ 1− (1− I)
ϑI

1 + ϑI

= 1− (1− I)υ(1)

κB ≡ 1

1− z

κC ≡
(

1

1− z

)(
1

1 + ϑI

)N̄−1

=

(
1

1− z

)
υ(N̄)

κD ≡ (1− z)
ϑI

1 + ϑI

= (1− z)υ(1)

κE ≡ (1− z)ϑI

κF ≡ (1− z)ϑI

(
1

1 + ϑI

)N̄−1

= (1− z)ϑIυ(N̄)

Limiting case. As N̄ → ∞, we can rewrite the system as:

SI → S⋆
I ≡

∞∑
∆=2

∆υ(∆) =
1 + ϑI

ϑI

− ϑI

1 + ϑI

Sλ → S⋆
λ ≡

∞∑
∆=2

λ−∆υ(∆) =
ϑI

λ(1 + ϑI)− 1
− λ−1

(
ϑI

1 + ϑI

)
Hence,

dmt+1 =

−(lnλ)

[
1− (1− I)

ϑI

1 + ϑI

]
︸ ︷︷ ︸

κA

−(lnλ)

(
−1− z

1− z

)
︸ ︷︷ ︸

−κB

S⋆
I

 dzt

+

−(lnλ)

[
−(1− z)

ϑI

1 + ϑI

]
︸ ︷︷ ︸

−κD

−(lnλ) (1− z)ϑI︸ ︷︷ ︸
κE

S⋆
I

 dIt + (1− z)dmt

=−(lnλ)[κA − κBS⋆
I ]︸ ︷︷ ︸

≡αm

dzt − (lnλ)[−κD + κES⋆
I ]dIt + (1− z)dmt (87)
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dΛt+1 =

λ−1

[
1− (1− I)

ϑI

1 + ϑI

]
︸ ︷︷ ︸

κA

+

(
−1− z

1− z

)
︸ ︷︷ ︸

−κB

S⋆
λ

 dzt

+

λ−1

[
−(1− z)

ϑI

1 + ϑI

]
︸ ︷︷ ︸

−κD

+(1− z)ϑI︸ ︷︷ ︸
κE

S⋆
λ

 dIt + (1− z)

(
1− I +

I

λ

)
dΛt

=[λ−1κA − κBS⋆
λ]dzt + [−λ−1κD + κES⋆

λ]dIt + (1− z)

(
1− I +

I

λ

)
dΛt (88)

Hence,

d log Λt+1 =
1

Λ
[λ−1κA − κBS⋆

λ]︸ ︷︷ ︸
≡αΛ

dzt+
1

Λ
[−λ−1κD+κES⋆

λ]dIt+
1

Λ
(1−z)

(
1− I +

I

λ

)
dΛt (89)

d logMt+1 =

(− lnλ− λ−1

Λ

)
κA︸ ︷︷ ︸

⊖

+(lnλ)κBS⋆
I︸ ︷︷ ︸

⊕

+
κB

Λ
S⋆
λ︸ ︷︷ ︸

⊕

 dzt

+

(− lnλ− λ−1

Λ

)
(−κD)︸ ︷︷ ︸

⊕

− (lnλ)κES⋆
I︸ ︷︷ ︸

⊕

− κE

Λ
S⋆
λ︸ ︷︷ ︸

⊕

 dIt

+ (1− z)dmt −
(1− z)

(
1− I + I

λ

)
Λ

dΛt (90)

=(αm − αΛ)dzt + CIdIt + (1− z)d logMt +
(1− z)I

(
1− 1

λ

)
Λ

dΛt

=(αm − αΛ)dzt + CIdIt + (1− z)d logMt + (1− z)I

(
1− 1

λ

)
(dmt − d logMt)

=(αm − αΛ)dzt + CIdIt + (1− z)

[
1− I

(
1− 1

λ

)]
d logMt + (1− z)I

(
1− 1

λ

)
dmt
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B.2 Proofs of Propositions 3 and 4

To prove Proposition 3, change in measure of aggregate misallocation d logMt+1 can be

written as

d logMt+1 = α1dυt+1(1) +
∞∑
j=2

αjdυt+1(j), (91)

where

αj = −(lnλ)(j)− λ−j

Λ
< 0 ∀j. (92)

α are all negative and α is decreasing in j for j ≥ 2, since dαj

dj
= − lnλ + (lnλ)λ

−j

Λ
=

(lnλ)(−1 + 1
λjΛ

) < 0 for j ≥ 2, such that |α2| < |α3| < ... < |αN̄ | < ... For |α1| < |α2| to

holds, it must be that:

|α2| − |α1| = lnλ+
1

λ2Λ
− 1

λΛ
> 0. (93)

If the condition in Equation 93 is satisfied, then the weights are decreasing in j and that

|αj| is increasing in j∀j.

It can be easily shown that dυt+1(1) is increasing in zt, whereas dυt+1(j) ∀j ̸= 1 are

decreasing in zt, and that:

−dυt+1(1) =
∞∑
j=2

dυt+1(j) (94)

As such, whether or not misallocation increase would depend on the relative magnitudes

of weighted α1dυt+1(1) versus the weighted sum of all the other αjdυt+1(j). Since |αj| is

increasing in j for j ≥ 2, it follows that if the sufficient condition in Equation 93 holds,

measure of misallocation is increasing in zt, since:

|α1dυt+1(1)| < |
∞∑
j=2

αjdυt+1(j)|. (95)

For the finite markup case with N̄ < ∞, the above equation would still hold.

To prove Proposition 4, for the limiting case when N̄ → ∞, we rewrite dυt+1(j) as κjdzt.
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It follows that: as long as |α1κ1| < |
∑∞

j=2 αjκj| is satisfied, misallocation measure at time 1

would fall in response to a reduction in entry rate at time 0. That is:

(
lnλ+

λ−1

Λ

)
κ1 < (lnλ)κBS⋆

I +
κB

Λ
S⋆
λ (96)

where

κ1 ≡ 1− (1− I)
ϑI

1 + ϑI

, κB ≡ 1

1− z

Λ ≡ ϑI

λ(1 + ϑI)− 1

S⋆
I ≡ 1 + ϑI

ϑI

− ϑI

1 + ϑI

S⋆
λ ≡ ϑI

λ(1 + ϑI)− 1
− λ−1

(
ϑI

1 + ϑI

)

To prove the special case with a finite markup, we again rewrite dυt+1(j) as κjdzt, where

κ1 ≡ 1− (1− I)υ(1) = κA (97)

κj ≡ −[(1− I)υ(j) + Iυ(j − 1)], for j = 2, ..., N̄ − 1 (98)

κN ≡ −[υ(N̄) + Iυ(N̄ − 1)] = −κC , (99)

change in aggregate misallocation measure d logMt+1 can be rewritten as

d logMt+1 = α1κ1dzt +
N̄∑
j=2

αjκjdzt (100)

=


(
− lnλ− λ−1

Λ

)
κ1︸ ︷︷ ︸

⊖

+(lnλ)κBSI︸ ︷︷ ︸
⊕

+
κB

Λ
Sλ︸ ︷︷ ︸

⊕

+

(
−(lnλ)N̄ − λ−N̄

Λ

)
κN︸ ︷︷ ︸

⊕

 dzt.

(101)

It follows that if and only if the coefficient in front of zt is positive, d logMt+1 is increasing
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in dzt. That is:

|α1κ1| < |
N̄∑
j=2

αjκj|. (102)

And that
∑N̄

j=1 αjκj determines how much does aggregate measure of misallocation next

period change following one percentage point change in zt. That is

(
lnλ+

λ−1

Λ

)
κA︸ ︷︷ ︸

⊕

< (lnλ)κBSI︸ ︷︷ ︸
⊕

+
κB

Λ
Sλ︸ ︷︷ ︸

⊕

+

(
(lnλ)N̄ +

λN̄

Λ

)
κC︸ ︷︷ ︸

⊕

. (103)

B.3 Proof of Proposition 5

Consider an economy along the balanced growth path. At time 0, there is an unanticipated

increase in nominal interest rate. di0 > 0. Suppose further that the central bank restores

full employment in production sector from t ≥ 1, such that d log(Lt − δzz
ζz
t ) = 0∀t ≥ 1.

From Equation 69, we have

d log gt+1 =
(λ− 1)(1− I))

(z + I(1− z))(λ− 1) + 1︸ ︷︷ ︸
≡αg>0

dzt.

From Equation 68, we have

d log Πt+1 = − log gt+1 + dmt − dmt+1, ∀t ≥ 1,

d log Π1 = − log g1 − dmt, for t = 0.

From Equation 70, we have

dmt+1 = −(lnλ)

[
dυt+1(1) +

N̄∑
∆=2

∆dυt+1(∆)

]
.

Since dυ1(1) is increasing in dz0, while dυ1(∆)∀∆ ≥ 2 is decreasing in dz0, and
∑N̄

∆=1 dυ1(∆) =
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0. Then
∑N̄

∆=1∆dυ1(∆) is decreasing in dz0. Hence

dm1 = −(lnλ)(κA − κBSI − N̄κC)dz0 = (lnλ)(κBSI + N̄κC − κA)︸ ︷︷ ︸
≡αm>0

dz0.

Similarly, dΛ1 =
∑N̄

∆=1 λ
−∆dυ1(∆) is an increasing function of dz0. Hence

d log Λ1 =
dΛ1

Λ
=

1

Λ
(λ−1κA − κBSλ − λ−N̄κC)︸ ︷︷ ︸

≡αλ>0

dz0.

Therefore, we have

d log Π1 = −(αg + αm)dz0,

and from Equation 71, suppose that Proposition 4 holds, then

d logM1 = (αm − αλ)dz0, where αm − αλ > 0.

From Equation 72, and since the central bank would stabilize the economy to full pro-

duction employment in period 1 onward, we have

d log y1 = d logM1 = (αm − αλ)dz0,

d log y0 = d log(L0 − δzz
ζz
0 ).

From consumption euler equation 66, we have

−σd log y0 − [σαλ + (1− σ)αm + (1− σ)αg]dz0 = d log(1 + i0), (104)

and from entrant’s innovation condition 67

d log y0 =
σ − 1

σ
(αm − αλ + αg)dz0 +

ζz − 1

z
dz0. (105)
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We focus on the case: σ > 1, then from Equation 104, we have:13

dz0 = − 1

αλ +
σ(ζz−1)

z

d log(1 + i0),

i.e., dz0 decreases on impact on a contractionary monetary policy shock, and

d log y0 = −
(
σ − 1

σ

)(
αm − αλ + αg

αλ +
σ(ζz−1)

z

)
︸ ︷︷ ︸

⊕

d log(1 + i0)−
ζz − 1

z

(
1

αλ +
σ(ζz−1)

z

)
d log(1 + i0),

(106)

i.e., output decreases on impact, and

d logM1 = −

(
αm − αλ

αλ +
σ(ζz−1)

z

)
d log(1 + i0), (107)

i.e., allocative efficiency decreases the following period.

Equilibrium is guaranteed to exist if the following conditions are satisfied: (1) σ > 1, and

(2) αm > σ
σ−1

αλ. This can be shown from entrant’s innovation equation 67:

− [(σ − 1)αm − σαλ]
1

αλ +
σ(ζz−1)

z

d log(1+ i0) = (σ− 1)d logM2 + (σ− 1)αgdz1 +
ζz − 1

z
dz1.

(108)

Since production labor Lpt = L − δzz
ζz is fixed from period 1 onward, dz1 can at most be

zero. Since σ > 1, it follows that d logM2 < 0, such that the RHS is strictly negative. This

implies equilibrium condition αm > σ
σ−1

αλ.

Proof of Corollary 3. Following a reduction in entry rate, there exits two counteracting

forces - a level effect due to the widening of the labor wedge (production labor’s share

of income decreases as average level of markups increases) and a dispersion effect for the

distribution of markups - such that the misallocation effect of monetary policy is muted. In
13It can be shown that if σ = 1, then d log y0 = 0, and if σ < 1, then d log y0 > 0. That is, aggregate

output is unchanged or goes up on impact of a contractionary monetary policy shock.
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this special case we study, at time 1:

d logM1 = dm1 − d log Λ1

= (αm − αλ)dz0,

where dz0 = −
(

1

αλ+
σ(ζz−1)

z

)
d log(1+ i0), and that αm measures the dispersion effect and αλ

corresponds to the strength of the level effect:

αm = −(lnλ)

{
[1− (1− I)υ(1)]− 1

1− z

[
1 + ϑI

ϑI

− υ(1)

]}
, (109)

αλ =
1

Λ

{
λ−1[(1− (1− I)υ(1)]− 1

1− z
[Λ− λ−1υ(1)]

}
.

It can be shown that αm > 0, αλ > 0, thus, both real wage, dm1, and the production labor’s

share of income, d log Λ1, are increasing in dz0, such that on net, the misallocation effect is

attenuated.

More generally, at time t + 1, a contractionary monetary policy shock leads to a reduc-

tion in entry rate, dzt < 0. Both dmt+1 and d log Λt+1 would fall, and the net effect on

misallocation is determined by the difference between the two coefficients, αm and αλ:

d logMt+1 = dmt+1 − d log Λt+1,

where dmt+1 = αmdzt + (1− z)dmt, and d log Λt+1 = αλdzt + (1− z)
(
1− I + I

λ

)
d log Λt.

B.4 Proof of Proposition 6

The state-dependent misallocation effect of monetary policy is such that: in an economy

with low steady state level of average markups (high production labor’s share of income),

the misallocation effect of monetary policy is greater; in an economy with low steady state

density of firms with unitary markups, the misallocation effect of monetary policy is greater.
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The elasticity of the misallocation measure with respect to entrant’s innovation rate is:

αm − αλ =

(
− lnλ− λ−1

Λ

)
[1− (1− I)υ(1)] +

(
(lnλ)S⋆

I +
S⋆
λ

Λ

)(
1

1− z

)
=

(
− lnλ− λ−1

Λ

)
[1− (1− I)υ(1)] +

{
lnλ

[
1 + ϑI

ϑI

− υ(1)

]
+ 1− λ−1

Λ
υ(1)

}(
1

1− z

)

It follows that the elasticity is increasing in the production labor’s share of income in the

steady state:

∂(αm − αλ)

∂Λ
=

λ−1

Λ2
[1− (1− I)υ(1)] +

λ−1

Λ2
υ(1)

(
1

1− z

)
> 0,

and decreasing in the steady state density of firms with unitary markups:

∂(αm − αλ)

∂υ(1)
=

(
− lnλ− λ−1

Λ

)(
z

1− z
+ I

)
< 0

In steady state, it can be easily shown by taking partial derivatives that both Λ and υ(1)

are increasing in entrant’s innovation rate z and decreasing in incumbent’s innovation rate I.

The increases in Λ and υ(1) (corresponding to a higher rate of entrant’s innovation rate) have

counteracting effects on the elasticity of the misallocation measure. In other words, whether

the misallocation effect following a one-time shock to entrant’s innovation is stronger in an

economy with higher entrant’s innovation rate is ambiguous.

C Theoretical Extensions

C.1 Incorporating value functions

In the baseline model, we assume that entrants could only earn profits for one period, we relax

the assumption and consider instead that outside entrepreneurs’ maximization problems
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takes the following form:

max
zt

{Dt,t+1ztVt+1(1)− δzz
ζz
t Wt}, ζz > 1

where Vt+1(1) is incumbent’s value function with unitary quality gap, and outside en-

trepreneur’s first order condition is:

Et[Dt,t+1Vt+1(1)] = δzζzz
ζz−1
t Wt. (110)

As for the incumbents, their value function can be written as

Vt(∆) = (1− λ−∆)PtYt + Et{Dt,t+1(1− zt)[IVt+1(∆ + 1) + (1− I)Vt+1(∆)]},

where Dt,t+1 is the stochastic discount factor, and I is the exogenous probability of successful

own innovation. The value function of the firm consists of two parts: (i) the profits generated

from existing quality gap ∆, (ii) the expected profits for the next period, conditioning on

surviving creative destruction this period and increasing the existing quality gap by one step,

this happens at the exogenous probability of own innovation I.

Stationarization of value function. Notice that the value functions are non-stationary,

we normalize them as follows:

Ṽt(∆) ≡ Vt(∆)

PtQt

= (1− λ−∆)yt + Et

{
β
y−σ
t+1

y−σ
t

g1−σ
t+1 (1− zt)[IṼt+1(∆ + 1) + (1− I)Ṽt+1(∆)]

}
,

and outside entrepreneur’s first order condition can be normalized as:

βEt

[
y−σ
t+1

y−σ
t

g1−σ
t+1 Ṽt+1(1)

]
= δzζzwtz

ζz−1
t , (111)
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where

Ṽt(1) = (1− λ−1)yt + Et

{
β
y−σ
t+1

y−σ
t

g1−σ
t+1 (1− zt)[IdṼt+1(1) + Ṽt+1(1)]

}
,

dṼt(1) ≡ Ṽt(2)− Ṽt(1) = λ−1(1− λ−1)yt + Et

{
β
y−σ
t+1

y−σ
t

g1−σ
t+1 (1− zt)

[
I

(
λ−1 − λ−2

1− λ−1

)
+ (1− I)

]
dṼt+1(1)

}
.

Steady states. In steady states, Ṽt(∆) = Ṽt+1(∆) = Ṽ (∆)∀∆.

Conjecture that the value function takes the following form in the steady state

Ṽ (∆) = α− κλ−∆,

hence, it follows that dṼ (∆) ≡ Ṽ (∆ + 1)− Ṽ (∆) = (1− λ−1)κλ−∆.

Collecting terms, it can be shown at

α =
y

1− βg1−σ(1− z)
,

κ =
y

1− βg1−σ(1− z)[1− I(1− λ−1)]
.

Hence, the value function in balanced growth path (BGP) is given by

Ṽ (∆) =
y

1− βg1−σ(1− z)
− y

1− βg1−σ(1− z)[1− I(1− λ−1)]
λ−∆,

and outside entrepreneur’s innovation decision in BGP is

βg1−σ

[
1

1− βg1−σ(1− z)
− λ−1

1− βg1−σ(1− z)[1− I(1− λ−1)]

]
y = δzζz exp(m)zζz−1. (112)

As N̄ → ∞, the balanced growth path (BGP) for the economy are characterized by con-

stant values for technical efficiency growth rate g, probability of successful entry z, normalized
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output y, price inflation Π, employment L, value functions Ṽ (1) and dṼ (1) satisfying:

gσ =
β(1 + iss)

Π
(113)

βg1−σṼ (1) = δzζz

(
λ
− 1+ϑI

ϑI

)
zζz−1 (114)

Ṽ (1) =

[
1

1− βg1−σ(1− z)
− λ−1

1− βg1−σ(1− z)[1− I(1− λ−1)]

]
y (115)

dṼ (1) =
(1− λ−1)λ−1

1− βg1−σ(1− z)[1− I(1− λ−1)]
y (116)

Π =
πw

g
(117)

g = (z + I − zI)(λ− 1) + 1 (118)

y = (L− δzz
ζz)M, where (119)

M =
exp(m)

Λ
=

(
λ
− 1+ϑI

ϑI

)(
λ(1 + ϑI)− 1

ϑI

)
, ϑI =

z

(1− z)I

where iss represents the nominal interest rate alone the BGP. The eight equations are (i)

household’s Euler equation, (ii) outside entrepreneur’s innovation decision, (iii) and (iv) value

functions for unitary quality gap, (v) wage rigidity equation, (vi) growth rate of technical

efficiency, and (vii) resource constraint.

Log-linearization. We log-linearize the normalized competitive equilibrium around its

steady state and define the log-linearized equilibrium of the economy as follows:

Definition. As N̄ → ∞, the log-linearized competitive equilibrium of the economy is defined

as a sequence of variables {d log yt, d log gt+1, dzt, dit, dLt, d log Ṽt(1), d log dṼt(1), d log Πt, dmt+1,

d logMt+1} that satisfy the following 10 equations, for a given sequence of exogenous shocks

{d log ϵmt } and given initial values of state variables {dm0, d logM0}.
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Consumption Euler equation

−σd log yt = −σEtd log yt+1 − σd log gt+1 + d log(1 + it)− dEt log Πt+1 (120)

Entrant’s innovation decision

[σd log yt − σEtd log yt+1 − σd log gt+1] + Etd log Ṽt+1(1) + d log gt+1 = dmt + (ζz − 1)d log zt

(121)

Value functions

d log[Ṽt(1)− (1− λ−1)yt] = [σd log yt − σEtd log yt+1 + (1− σ)d log gt+1] + d log(1− zt)

(122)

+ Etd log[IdṼt+1(1) + Ṽt+1(1)], where

d log[Ṽt(1)− (1− λ−1)yt] =
Ṽ (1)d log Ṽt(1)− (1− λ−1)yd log yt

Ṽ (1)− (1− λ−1)y

Etd log[IdṼt+1(1) + Ṽt+1(1)] =
IdṼ (1)d log dṼt+1(1) + Ṽ (1)d log Ṽt+1(1)

IdṼ (1) + Ṽ (1)

d log[dṼt(1)− λ−1(1− λ−1)yt] = [σd log yt − σEtd log yt+1 + (1− σ)d log gt+1] + d log(1− zt)

(123)

+ Et

[
I

(
λ−1 − λ−2

1− λ−1

)
+ (1− I)

]
d log dṼt+1(1), where

d log[dṼt(1)− λ−1(1− λ−1)yt] =
dṼ (1)d log Ṽt(1)− λ−1(1− λ−1)yd log yt

dṼ (1)− λ−1(1− λ−1)y

Wage rigidity equation

d log Πt = −d log gt + dmt−1 − dmt (124)
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Technical efficiency growth equation

d log gt+1 =
(λ− 1)(1− I)

(z + I(1− z))(λ− 1) + 1︸ ︷︷ ︸
≡αg

dzt = αgdzt (125)

Measure of aggregate misallocation

dmt+1 = αmdzt + (1− z)dmt (126)

d logMt+1 =(αm − αΛ)dzt + (1− z)

[
1− I

(
1− 1

λ

)]
d logMt + (1− z)I

(
1− 1

λ

)
dmt, where

(127)

κA ≡ 1− (1− I)
ϑI

1 + ϑI

, κB ≡ 1

1− z
, ϑI ≡

z

(1− z)I

S⋆
I ≡

∞∑
∆=2

∆υ(∆) =
1 + ϑI

ϑI

− ϑI

1 + ϑI

,

S⋆
λ ≡

∞∑
∆=2

λ−∆υ(∆) =
ϑI

λ(1 + ϑI)− 1
− λ−1

(
ϑI

1 + ϑI

)
,

αm ≡ −(lnλ)[κA − κBS⋆
I ],

αΛ ≡ 1

Λ
[λ−1κA − κBS⋆

λ],Λ ≡ ϑI

λ(1 + ϑI)− 1
.

Resource constraint

d log yt = d log(Lt − δzz
ζz
t ) + d logMt (128)

Monetary policy rule

d log(1 + it) = ϕd log(Lt − δzz
ζz
t ) + d log ϵmt , ϕ > 0, it > 0 (129)
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Figure 5: Model-based impulse response to a one-time monetary policy shock

Notes: The figure shows the impulse responses of the nominal interest rate, entrant innovation rate, produc-
tion labor, the measure of misallocation, real wage, and the production labor’s share of income to a one-time
contractionary monetary policy shock.

Modelled dynamic responses. Figure 5 graphically illustrates the dynamic responses

of nominal interest rate, entrant innovation rate, employment level in the production sector,

allocative efficiency, real wage, and the production labor’s share of income to a contractionary

monetary policy shock.

C.2 Endogenizing incumbent innovation

In the baseline model, we assume that rates of incumbent innovation I are exogenous and thus

unaffected by business cycle fluctuations. We now relax the assumption and allow incumbents

to choose their rates of own innovation It(∆). Incumbents’ maximization problems can be

written as:

max
It(∆)

{
(1− λ−∆)PtYt + EtDt,t+1(1− zt)[ItVt+1(∆ + 1) + (1− It)Vt+1(∆)]− c(It,∆)Wt

}
,
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where c(It,∆) denotes costs of own innovation in units of R&D labor hired. To make progress

in solving the more general case, we follow Peters (2020) to assume a particular functional

form for the cost function such that

c(It,∆) = λ−∆δIIt(∆)ζI , ζI > 1

where δI determines the efficiency of own innovation, and ζI > 1 ensures convexity of the

cost function such that there exists a unique solution.

First order condition implies that:

EtDt,t+1(1− zt) [Vt+1(∆ + 1)− Vt+1(∆)] = ζIλ
−∆δII

∗
t (∆)ζI−1Wt (130)

Labor market clearing. The labor market clearing condition can be rewritten as:

Lt = Lpt+Lrt = Lpt+ δzz
ζz
t +

∫ 1

0

λ−∆iδII
ζI
it di = Lpt+ δzz

ζz
t +

∞∑
∆=1

λ−∆δIIt(∆)ζIυt(∆). (131)

Stationarization of value function. Likewise, we rewrite the normalized value function

Ṽt(∆) ≡ Vt(∆)
PtQt

as:

Ṽt(∆) = (1−λ−∆)yt−λ−∆δII
∗
t (∆)ζIwt+Et

{
β
y−σ
t+1

y−σ
t

g1−σ
t+1 (1− zt)[I

∗
t (∆)Ṽt+1(∆ + 1) + (1− I∗t (∆))Ṽt+1(∆)]

}
,

where first order condition implies that the optimal rate of own innovation is:

I∗t (∆) =

βEt
y−σ
t+1

y−σ
t

g1−σ
t+1 (1− zt)[Ṽt+1(∆ + 1)− Ṽt+1(∆)]

ζIλ−∆δIwt


1

ζI−1

. (132)

Guess and verify that I∗t (∆) = I∗t ∀∆: let dṼt(∆) ≡ Ṽt+1(∆+1)− Ṽt+1(∆), it follows that:

dṼt(∆) = λ−∆(1−λ−1)(yt+δII
∗ζI
t wt)+Et

{
β
y−σ
t+1

y−σ
t

g1−σ
t+1 (1− zt)[I

∗
t dṼt+1(∆ + 1) + (1− I∗t )dṼt+1(∆)]

}
,
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similarly,

dṼt(∆ + 1) = λ−∆(λ−1 − λ−2)(yt + δII
∗ζI
t wt) + Et

{
β
y−σ
t+1

y−σ
t

g1−σ
t+1 (1− zt)[I

∗
t dṼt+1(∆ + 2)

+(1− I∗t )dṼt+1(∆ + 1)]
}
.

Guess that:

dṼt(∆ + 1) =
λ−1 − λ−2

1− λ−1
dṼt(∆),

It can be easily verified that the equality holds such that:

dṼt(∆) = λ−∆(1−λ−1)(yt+δII
∗ζI
t wt)+Et

{
β
y−σ
t+1

y−σ
t

g1−σ
t+1 (1− zt)

[
I∗t

(
λ−1 − λ−2

1− λ−1

)
+ (1− I∗t )

]
dṼt+1(∆)

}
.

(133)

Since optimal own innovation I∗t (∆) can be written as:

I∗t (∆) =

βEt
y−σ
t+1

y−σ
t

g1−σ
t+1 (1− zt)dṼt+1(∆)

ζIλ−∆δIwt


1

ζI−1

, (134)

and λ−∆ in both numerator and denominator should cancel out each other, we have I∗t (∆) =

I∗t ∀∆.

We can thus rewrite first order condition of entrant’s optimization problem:

βEt

[
y−σ
t+1

y−σ
t

g1−σ
t+1 Ṽt+1(1)

]
= ζzδzz

ζz−1
t wt, (135)

where

Ṽt(1) = (1− λ−1)yt − λ−1δII
∗ζI
t wt + Et

{
β
y−σ
t+1

y−σ
t

g1−σ
t+1 (1− zt)[I

∗
t dṼt+1(1) + Ṽt+1(1)]

}
,

dṼt(1) = λ−1(1− λ−1)(yt + δII
∗ζI
t wt) + Et

{
β
y−σ
t+1

y−σ
t

g1−σ
t+1 (1− zt)

[
I∗t

(
λ−1 − λ−2

1− λ−1

)
+ (1− I∗t )

]
dṼt+1(1)

}
.

Steady states. In steady states, again conjecture that Ṽ (∆) = α − κλ−∆, then the first
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order condition is:

I∗(∆) =

[
βg1−σ(1− z)(1− λ−1)κ

ζIδIw

] 1
ζI−1

.

Suppose that κ
w
= constant (which we verify later), then we have I∗(∆) = I∗∀∆.

From the value function, we can show that:

α =
y

1− βg1−σ(1− z)
,

κ =
y + δII

∗ζIw

1− βg1−σ(1− z)[1− I∗(1− λ−1)]
.

Since κ
w
= y/w+δII

∗ζI

1−βg1−σ(1−z)[1−I∗(1−λ−1)]
, and y

w
= Lp

Λ∗ in BGP, then κ
w
= constant.

Outside entrepreneur’s innovation decision in BGP can be rewritten as

βg1−σ

[
1

1− βg1−σ(1− z)
−

(1 + δII
∗ζI Λ∗

Lp
)λ−1

1− βg1−σ(1− z)[1− I∗(1− λ−1)]

]
y = δz exp{m}, (136)

where Lp = L− Lr = L− δzz
ζz − δII

∗ζIΛ∗.

Calibration. We calibrate the extended models with parameters provided in Table 2.

Incumbent’s own innovation in steady state is I∗ = 0.0898, while we keep the steady state

rate of entrant’s innovation at z∗ = 0.24 as in the baseline model. Parameters for the

productivity and curvature of incumbent’s and entrant’s R&D efforts are calibrated to match

these moments.
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Table 2: Parameters

Value Source/Target
Elas. intertemporal substitution 1/σ = 0.5 Standard value
Discount factor β = 0.96 Standard value
Wage inflation at steady state πw = 1.02
Innovation step size λ = 1.0649 Akcigit and Kerr (2018)
Parameter for entrant’s R&D cost δz = 0.0832 FOC for entrant innovation
Curvature of entrant’s R&D cost ζz = 1.5
Persistence of monetary shock ρm = 0.9 Standard value
Parameter for incumbent’s R&D cost δI = 0.9
Curvature of incumbent’s R&D cost ζI = 2

Notes: Model period corresponds to a year.

Modelled dynamic responses. Figure 6 graphically illustrates the dynamic responses

of nominal interest rate, entrant innovation rate, allocative efficiencyïŒ incumbent’s own

innovation rate, growth rate, employment level in the production sector, real wage and

production labor’s share of income to a contractionary monetary policy shock.

C.3 CES demand function

In the baseline model, we assume that household’s preferences take a particular form of

unitary elasticity, now we relax the assumption to study the case with a general CES demand

structure that takes the form14

Yt =

(∫ 1

0

x
η−1
η

it di

) η
η−1

, η > 1. (137)

With CES demand, firms with quality gaps that are sufficiently large will find it optimal

to charge the unconstrained markup η
η−1

in stead of the limit price. It follows that

µit(∆) = min

{
η

η − 1
, λ∆

}
. (138)

14In calibration, we set the elasticity of substitution η = 6, following convention.
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Figure 6: Model-based impulse response to a one-time monetary policy shock

Notes: The figure shows the impulse responses of the nominal interest rate, entrant innovation rate, incum-
bent’s own innovation rate, production labor, TFP growth rate, the measure of misallocation, real wage, and
the production labor’s share of income to a one-time contractionary monetary policy shock.

Then we derive an expression for real wages W̃t to be used later:

W̃t ≡
Wt

Pt

=

[∫ 1

0

µ1−η
it qη−1

it di

] 1
η−1

, (139)

where in any period t, the joint distribution of quality gaps (which determine markups) and

quality, Ft(∆, q) would determine real wages at t.
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Likewise, aggregate output can be rewritten as

Yt = QtLptMt, where Mt ≡

[∫ 1

0
µ1−η
it

(
qit
Qt

)η−1

di

] η
η−1

∫ 1

0
µ−η
it

(
qit
Qt

)η−1

di
, (140)

where Qt ≡ (
∫
qη−1
it di)

1
η−1 is a measure of technical efficiency, while Mt is a measure of

allocative efficiency in the economy.

It remains to show that the equilibrium profit function of a variety with markup µit and

quality qit is given as

Φit(∆, qit) = (1− µ−1
it )Pitxit = (1− µ−1

it )µ
1−η
it qη−1

it W̃ 1−η
t PtYt. (141)

The entrant’s optimization problem implies:

βEt

[
Y −σ
t+1

Y −σ
t

Pt

Pt+1

Φi,t+1(1, qi,t+1)

]
= ζzδzz

ζz−1
t Wt, (142)

where Φi,t+1(1, qi,t+1) =
(
1− 1

λ

)
λ1−ηEi

[
qi,t+1

W̃t+1

]η−1

Pt+1Yt+1.

Similar to baseline model, we assume that incumbent’s own innovation occurs at an

exogenous probability I, this simplifies the analysis as now the marginal distributions of

quality gaps ∆ and quality q are independent such that: Ft(∆, q) = F∆,t(∆)Fq,t(q). Since

markups only depend on ∆, it follows that the distribution of markups is independent of the

distribution of q, and that the evolution of quality gaps are governed by the same equations

46 - 48. It remains to show that zt is independent of q.

Equation 142 can be normalized to:

βEt

[
c1−σ
t+1 g

1−σ
t+1

c−σ
t

(
1− 1

λ

)
λ1−ηEi [qi,t+1]

η−1 W̃ 1−η
t+1

]
= δzwt, (143)

where wt ≡ W̃t

Qt
=

[
∫ 1
0 µ1−η

it qη−1
it di]

1
η−1

(
∫
qη−1
it di)

1
η−1

is the normalized real wage.
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Making use of the fact that
∫
q

(
q
Qt

)η−1

dFt(q) = 1, entrant’s optimal innovation decision

can be rearranged as

βEt

[
c1−σ
t+1 g

1−σ
t+1

c−σ
t

(
1− 1

λ

)
λ1−ηw1−η

t+1

]
= ζzδzz

ζz−1
t wt, (144)

and that zt is independent of quality q and in the special case η = 1, it collapses to the

baseline case we analyze in the main text. Since zt alone determines the evolution of quality

gaps, it follows that the measure of aggregate misallocation can be rewritten as:

Mt ≡
[∫

µ1−η
it di

] η
η−1∫

µ−η
it di

=

[∑N̄
∆=1 µ(∆)1−ηυt(∆)

] η
η−1∑N̄

∆=1 µ(∆)−ηυt(∆)
, (145)

similarly, normalized real wage wt =
[∑N̄

∆=1 µ(∆)1−ηυt(∆)
] 1

η−1 .

Finally, there exits a threshold value for quality gap ∆ such that:

µ(∆) =


λ∆, if ∆ <

ln( η
η−1)
lnλ

η
η−1

if ∆ ≥ ln( η
η−1)
lnλ

. (146)

Steady states. In steady state, υ(∆) would be exactly the same as in the baseline case,

and they pin down steady state measure of aggregate misallocation M and normalized real

wage w. The entrant’s innovation decision is given by

βg1−σ(1− λ−1)λ1−η(L− δzz)M = ζzδzz
ζz−1wη. (147)

Modelled dynamic responses. Figure 7 graphically illustrates the dynamic responses

of nominal interest rate, entrant innovation rate, employment level in the production sector,

and allocative efficiency to a contractionary monetary policy shock.
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Figure 7: Model-based impulse response to a one-time monetary policy shock

Notes: The figure shows the impulse responses of the nominal interest rate, entrant innovation rate, produc-
tion labor, the measure of misallocation, real wage, and the production labor’s share of income to a one-time
contractionary monetary policy shock.
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