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Abstract

We review the “production approach” to estimating markups—the ratio of price to
marginal cost. Paired with increasingly rich microdata and advances in production-
function estimation, the method enables scalable analysis of markups across firms,
industries, and time. We survey what economists need to know about the production
approach, emphasizing both its promise and its fragility. Conceptually, empirically,
and econometrically, the production-based markup is a residual-—absorbing model
misspecification, data limitations, and unobserved frictions. These challenges help
explain why empirical results often diverge, including on whether markups have risen
sharply in recent decades. We outline practical guidance for researchers and highlight
directions for future work: improving transparency in reporting, validating production-
based markups against demand-based and quasi-experimental estimates, and integrat-
ing firm-level heterogeneity into macroeconomic models. The production approach is
not a finished product, but it remains a uniquely powerful tool for studying market
power and its implications for productivity, welfare, and macroeconomic dynamics.
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Macroeconomics is microeconomics plus aggregation.

Basu and Fernald (1997, p.264), paraphrasing Franklin Fisher

We review the “production approach” to estimating markups of price over marginal cost.
Intuitively, markups are about pricing; pricing relates to marginal cost, and marginal cost
reflects the production constraints facing firms. The increased availability of firm-level mi-
crodata and new econometric methods makes it easier to estimate production functions and
infer markups. We survey what macroeconomists need to know about the microeconomet-
ric production approach. Our goal is to bridge micro and macro perspectives, highlighting

challenges in moving from firm-level analyses to economy-wide conclusions.

Hall (1986, 1988, 1990) introduced the production approach. He showed that cost minimiza-
tion implies the markup can be written as the ratio of the output elasticity of a flexible
input to its revenue share (the share of that input’s costs in revenue). Markups can be read
directly from producer behavior. There is no need to specify a demand system or market
structure. This makes the approach attractive relative to typical methods from industrial
organization (IO) that are tailored to narrow industries. The production approach scales to

large panels of firms across the economy and over time.

De Loecker and Warzynski (2012) showed how to apply the production approach to firm-
level data using modern methods for estimating production functions. Interest in market
power has since soared, in part because sharply rising markups might provide a unified
explanation for a range of macroeconomic puzzles (De Loecker et al., 2020). These include
declining labor shares, rising economic profits, slow productivity growth, weak investment,

and declining dynamism.*

Modern macroeconomics rests on imperfect competition. In endogenous growth models,
firms charge a markup to cover innovation costs (Romer, 1990). In New Keynesian models,
firms are monopolistically competitive price-setters, not perfectly competitive price-takers
(Rotemberg and Woodford, 1999). Firm-level data, applied at scale, allow macroeconomists
to incorporate rich heterogeneity, strengthening the microeconomic foundations of macro

analysis.?

1References to these puzzles include, respectively, Elsby et al. (2013), Karabarbounis and Neiman (2014);
Barkai (2020), Karabarbounis and Neiman (2019); Fernald et al. (2025), Gutiérrez and Philippon (2017),
Crouzet and Eberly (2019); and Davis et al. (2006).

2For example, theory suggests that both high and heterogeneous markups can have significant welfare
costs. Edmond et al. (2023) find welfare costs rise sharply as average markups rise. Bagaee and Farhi (2020)
estimate that “eliminating the misallocation resulting from the large and dispersed markups...would raise
aggregate TFP by about 15%.”



However, the empirical evidence for rising markups is far from settled. Some production-
approach specifications (e.g., De Loecker et al. 2020) show sharp increases in recent decades.
Others do not (e.g., Foster et al. 2024; Traina 2018; Demirer 2025). Even if markups have
risen, the production approach is silent on their structural drivers. Are they “bad markups,”

)

reflecting barriers to entry? Or “good markups,” reflecting returns to innovation?

To put the empirical disagreements in context, our review emphasizes that the produc-
tion approach to markups is an exercise in naming a residual. From a cost-minimizing
first-order condition, the markup is the wedge between the output elasticity of a flexible
input and its revenue share. It absorbs whatever the model, data, or econometrics fail to
capture. We estimate the production function and infer market power as a residual. Dif-
ferences in (mis)measurement and (mis)specifications across papers—even those using the

same data—can therefore yield different residuals, different production markups.

Even if we resolve all the empirical disagreements, a key issue for macro is how to interpret
the micro estimates. The implications of market power depend on its cause. The strength
of the production approach is that it requires limited structure. That strength is also its
weakness. We need the structure for welfare analysis. Modern 10 methods rely on structural
models tailored to competition and demand within narrowly defined markets. These models
offer detailed insights into firm behavior and allow interpretation of equilibrium markups in

a highly context-dependent way.

The production approach offers breadth: scalable estimates of markups across industries
and firms over time. 1O offers depth: detailed structural insights in narrow markets. Its
narrow focus limits its usefulness to macroeconomists, who need economy-wide coverage.
Macroeconomists must combine both perspectives, complementing markup estimates with
institutional and structural knowledge, to build models of market power that match reality.

We return to these issues at the end of the paper.

We begin this review by describing the production approach to markups in section 1. We
highlight how few assumptions are needed—mainly a flexible input and cost minimization.
The cost-minimizing FOC is quite simple: For a flexible input and a firm that takes input

prices as given, the markup is its output elasticity relative to its revenue share.

Unfortunately, the devil is in the implementation. As we document in Section 2, the empirical
evidence is mixed. The fundamental challenge is that implementing the elegant production
approach requires substantive choices—each of which layers on different auxiliary assump-
tions, with limited guidance. The “garden of forking paths” in Section 2 documents the

sensitivity across two (of multiple) sets of choices. One regards which input is taken to be



flexible—mainly labor or materials. Another is how much variation we allow across firms and
over time in output elasticities. Several studies use the same data and estimation technique
to show that these choices matter. The results are stark: Some choices imply sharply rising

markups; others do not.

The remainder of the review explores conceptual (Section 3), data (Section 4), and econo-
metric (Section 5) hypotheses for why empirical results with micro data are so sensitive. We
also discuss directions forward. The underlying issue is that, because production markups

are residuals, any misspecification or mismeasurement is swept into the estimated markup.

Section 3 discusses two conceptual hypotheses for the dissonant results of the garden. Ei-
ther the key FOC is misspecified and needs an extra wedge for one or both inputs; or the
production function is misspecified and does not allow sufficient flexibility in the estimated
output elasticities. Most obviously, suppose we assume (as much of the literature does) that
the production technology is Cobb-Douglas and pool firms at an aggregated level to estimate
this production technology. Then, by construction, we do not allow variation in output elas-
ticities. To satisfy the FOC, we impose that all observed variation in revenue shares reflects
markups and none reflects non-markup frictions (e.g., adjustment costs, input markdowns,
or regulatory barriers) or variable output elasticities. This tension between markups and

technology is a recurring theme throughout our review.

Having theoretical hypotheses does not prove they fully explain the dissonant results. In
principle, we could also have the wrong revenue share in the numerator. Or, even if we have
the correct production function, estimation bias might be more severe for one input than
another. Section 4 discusses data constraints. Data rarely match the theoretical objects
assumed by the production approach. Inputs and outputs are measured with error—and
sometimes, as with many intangibles, not measured at all. Measurement shortcomings can

distort revenue shares or bias econometric estimation of output elasticities.

Section 5 discusses econometric pitfalls and how research has tried to address them. Inputs
are endogenous to unobserved technology shocks, and we usually lack firm-specific output and
input prices. Considerable progress has been made in recent decades, e.g., control functions
and dynamic panel methods. Most of these new methods were originally developed assuming
perfect data—including firm-specific output prices—and perfect competition. Progress has
been made at relaxing these restrictions, but not yet enough. Each method introduces its
own assumptions and fragilities. The econometrician is trying to recover primitives from
behavior jointly shaped by technology, demand, and frictions. This simultaneity means even

the best estimator rests on structural choices that are not innocuous.



In each of Sections 3 to 5 we offer both practical guidance and avenues for future research.
Section 6 then concludes with three calls to arms. All three highlight the tension between
market power and technology in the production approach to markups. First, we call for
transparency and systematic reporting of how much revenue-share variation is explained
by markups versus output elasticities. Second, we call for validation of production-based
markups using demand-based estimates from IO, quasi-experimental evidence, and simula-
tions. Third, we call for more work mapping firm-level markup and technological hetero-

geneity into macroeconomic models.

In sum, the production approach is both powerful and fragile. Its potential is unmatched
for estimating markups at scale. With continued refinement, it can become an even more

reliable tool for understanding firms, markets, and the aggregate economy.

1 The production approach to markup estimation

Production functions and markups are inextricably linked through factor demand. Firms
with market power restrict input use to lower output and raise prices. We first present the
key cost-minimizing first-order condition (FOC) for optimal input use, then describe the role
this FOC plays in growth accounting, where the production approach to markup estimation
originated. Finally, we discuss how the FOC again takes center stage in the new literature

on production-based microdata markups.

1.1 The unifying first-order condition

Consider the following production function F' for firm ¢ in time ¢:
)/;:t - F<Kit7 Lita Mit7 Azt) (1)

Y;; is gross output; for a multi-product firm, it is an index over its various outputs. We
separate inputs into capital, K, labor, L;, and intermediate inputs, M;;. Each input is an

index over heterogeneous types of labor, capital, or intermediates.® A;, denotes productivity.

Suppose some X;; € { Ky, Ly, My} is fully flexible. It is chosen in the current period and
affects only current-period costs, unlike dynamic inputs with adjustment costs. The firm

takes the input price W;¥ as given, ruling out input-market power (e.g., monopsony a la

3The separability assumptions in (1) impose that elasticities of substitution between elements of K;; and
L;; are equal, which rules out possibilities like computers complementing high-skilled workers but substituting
for low-skilled workers or energy complementing capital but substituting for labor (Berndt and Wood, 1975).



Robinson 1933). The firm minimizes costs:

min W Xy
Xt

st. Y= F(Ky, Ly, My, Ai).
The cost-minimizing first-order condition (FOC) for optimal input demand is:

OF (K¢, Lig, My, Ayy)

IVX
. p— Al .
i ¢ 0X; (3)

The Lagrange multiplier \;; is the cost of relaxing the production constraint by one unit,
i.e., marginal cost. This FOC links a factor’s price to its marginal product and the firm’s

marginal cost. To interpret this condition, we define three terms:

o [ = i: is the firm’s markup of price over marginal cost,

® Vit = px; 3o I8 the elasticity of output with respect to input X;;, and
WX X . .
° si = oy~ is the share of the factor’s costs in revenue.

With these definitions, the FOC implies the flexible factor’s output elasticity, v;f, equals a

markup p;; over the factor’s revenue share s3:

Vil = HatSyy - (4)

FOC (4) is the key equation in the production approach to markups. We next trace out this

approach’s origins in growth accounting and then return to its implementation in microdata.

1.2 Growth accounting and the production approach

In a series of papers, Bob Hall pioneered the production approach to measuring markups in
time-series data (Hall, 1986, 1988, 1990). Growth accounting was one of the first applications
of the approach. Markups affect the interpretation of common productivity measures used

in both macro and micro.

Following Solow (1957), we differentiate the production function (1) logarithmically to quan-

tify the contributions of inputs versus productivity to growth. Define j = log J as variable



J in log-levels, so Aj = Alog J is its log-growth rate. The change in output is:*

Hall’s insight was to substitute the FOC (4) into (5)—without imposing that p = 1:

Ayit = Wit (Sft(Aklt + Sil;fAlit + S%Amit) + Aait
= ppAxy + Aag. (6)

In this “Hall equation,” Az; = sft( Ak + sf;Alit + sf‘f Amy; is revenue-share-weighted input
growth. Classic growth accounting (Solow, 1957; Jorgenson and Griliches, 1967) imposes
wir = 1. Equation (6) then defines the log-growth rate of TFP, Atfp, as an index number:

At fpi = Ay — Axy = Aay. (7)
No estimation is required. If u; is indeed one, and if measured factor shares and quantity

growth rates are correct, then this TFP residual equals true productivity growth, Aa.

With markups, however, Atfp does not fully account for the productive contribution of
inputs. Markups create a wedge between output elasticities and factor shares. Some of the

productive contribution of input changes bleeds into the TFP residual:
Atfpy = (pie — 1)Azy + Aay. (8)
Hall argued this additional term could explain why aggregate TFP is procyclical, rising in

booms and falling in recessions.

This work also highlights how economic profits relate to markups and returns to scale. The
scale elasticity is v = X +~4 +~3!: If all inputs change by some proportion d, then output

changes by 7; - d. Constant returns means v; = 1. Suppose FOC (4) holds for all inputs.®

4We have normalized the elasticity of output with respect to technology, BF(K“’(];“_’M“’A“) %, to one. Any

variation in this elasticity from non-factor-neutral technology will be subsumed into Atait. Solow operated in
continuous time; using log-changes is the discrete-time approximation. The differentiation provides a local
approximation to a general production function, so the output elasticities v;f in general vary over time for
all inputs X. With Cobb-Douglas, (5) is exact and ~;f = ;X are time-invariant.

®The FOC might need to be modified for some inputs, such as those with adjustment costs or other
frictions. As Section 3.2 discusses, the correct “shadow price” of input X might be WX (1 + 7). The full
shadow price then needs to be included in the definition of economic costs below, but the logic remains.




Economic profits arise from higher markups p;; or lower scale elasticities 7;:

Vit = Hit (sff + sl + 3%)
B Cost;
= Ha Revenue
Yit = ,U/zt(l - SHit)? (9)

where sy, = (PyYi;—Costy; )/ Py Yy is the rate of pure economic profit and Costy = WE Ky, +
WEL; + W2 M, is total economic cost—the sum of all actual and shadow expenditures on
inputs.® Economic profits therefore arise when markups exceed the scale elasticity (i > i)
Whether profits result from markups or from scale elasticities is important in macro models

because, as Basu (2019) notes, welfare depends on markups not profits.

Given this close relationship, knowing either markups or scale elasticities is sufficient to
disentangle the relationship between growth in output, inputs, and productivity. The Hall
equation (6) shows the relationship using markups p;; and revenue-weighted input growth
Azy. To see the relationship with returns to scale, we combine the FOC (4) and the middle
equality in (9) to note an equivalence between an input’s markup-adjusted revenue share

pirsi and its scale-adjusted cost share 7;ciy , where ¢if = WX X;;/Costy:
Vi = HitSy = YitCy (10)

Substituting this equality into equation (6), we see output growth Ay, linked to cost-share-

cost

weighted input growth Ax§** using the scale elasticity v;:
Ayis = YAz + Aajy. (11)

For growth accounting, we can measure productivity growth Aa; with a markup p; and
equation (6) or with a scale elasticity ~; and equation (11). If we estimate either p;; or i,

we can infer the other as the residual, ensuring that equation (9) holds.

Hall introduced this production approach to markups by estimating equation (6)—or, equiv-

alently, equation (11)—in industry time-series data. Input growth is presumably endogenous

SNoting that p;; = Pis/\it, where \;; is marginal cost, we can use the middle equality in (9) to show
that ~;+ is the ratio of average to marginal cost. Increasing returns can take multiple forms. For example,
suppose labor is the only input and that Y;; = (L; — Eit)‘siLt — ®;;. Py is a fixed cost of production
defined in units of output and L; is overhead labor required for any level of production. Then ~;; =

vh =6k (1 + q;;‘t) (1 + LitLEfL—“ ) Increasing returns can arise from d% > 1 (decreasing marginal cost); from
overhead labor, L > 0; or if there are general fixed costs of production (®;; > 0). The macro implications

of decreasing marginal cost can differ from those of fixed costs or overhead factors.



to productivity change (the “transmission problem” of Marschak and Andrews, 1944). Hall
and the large literature that followed proposed using aggregate demand instruments, such
as military spending or identified monetary-policy innovations. These demand-side instru-
mental variables are correlated with input movements across many industries but should not
be correlated with an industry’s productivity shock Aa;;—making them valid instruments.
Subsequent work followed the same production approach in industry data, sometimes with

additional controls (e.g., for factor utilization or effects that are external to an industry).”

In his initial work, Hall (1986, 1988, 1990) found evidence of extremely large markups (typ-
ically in the range of two to four) using industry value-added data. Subsequent papers with
industry data generally found much smaller evidence of widespread markups using gross-
output data (even when converted to a value-added basis). For example, Basu and Fernald
(1997) estimate that the typical firm has close to constant returns to scale. Given their
estimate that the rate of economic profit s averaged about 3 percent in data from 1959 to

1989, their estimates imply that markups were typically only modestly above one.

A challenge with industry results is that industries are not decision-makers for whom the
cost-minimization problem (2) naturally applies. There can be reallocation effects within
industries (Basu and Fernald, 1997). Nevertheless, the Hall approach laid the groundwork

for the new literature on production-based markups in microdata, to which we turn next.

1.3 The new literature on production-based markups

The production approach to markup estimation has expanded rapidly with the increasing
availability of firm microdata.® The first-differenced, time-series approach of equations (6)
or (11) is poorly suited to these data (De Loecker, 2011b). First-differencing the produc-
tion function exacerbates measurement error in panel data (Griliches and Mairesse, 1998).
Aggregate-demand instruments that work with industry time series have low power in short

panels and limited (if any) firm-level cross-sectional variation.

De Loecker and Warzynski (2012) outline how focusing on a single input—rather than a
weighted bundle of inputs as in the Hall approach—can help overcome these shortcomings.

Conceptually, FOC (4) shows that markup estimation requires three steps:

e correctly selecting a flexible input Xj;,

X

e measuring its revenue share s;;, and

e specifying a production function and estimating the output elasticity ;.

"E.g., Caballero and Lyons (1992); Burnside et al. (1995); Basu and Fernald (1995), Basu et al. (2006).
8Klette (1999) was an early application of the Hall approach to firm-level data.

8



For flexible input X;;, the markup p;; can be inferred as variation in a firm’s revenue share

X
for that input, s, that is not explained by the output elasticity 5 : i = 2.
it

The first two steps are related. We need a fully flexible input so that the input’s revenue
share can potentially be observed in the data. Revenue shares for quasi-fixed inputs depend

on (unobservable) shadow prices, which makes it difficult to observe the relevant input cost.

For the third step, though we need the output elasticity for only one flexible input, estimation
generally requires all inputs to avoid omitted-variable bias. For example, with a time-

invariant Cobb-Douglas production function in labor, materials, and capital:
Yit = 7" ki + 7"l + M ma + ag. (12)

Omitting any input in estimation—even a quasi-fixed one like capital—risks biasing the

estimated output elasticity (v* or ™) that we want to use to measure markups.

The simplicity of the three-step production approach makes it conceptually appealing relative
to demand-side alternatives that can require extensive customization for each product or
industry. For example, many 1O studies have followed the approach of Berry et al. (1995).
That paper focuses on a narrow product category, automobiles. It explicitly models consumer
demand for different product attributes, as well as the nature of strategic interactions among
firms and firms’ profit-maximization problems. This approach requires detailed product-
level data as well as a large number of structural assumptions regarding consumer demand,

strategic interaction, and the nature of profit maximization.

The production approach relies on cost minimization, making it broadly applicable across
products and industries. Cost minimization is a general principle: regardless of how com-
plex or dynamic the profit-maximization problem may be, or even if firms are not strictly
maximizing profits, they typically aim to produce at the lowest possible cost. For example,
firms may face constraints on adjusting prices each period or operate in complex competitive

environments, yet still choose the least-cost method to produce what they sell.

At the same time, the production approach to markups—Ilike TFP measurement—is about
naming a residual. The markup is the residual that ensures FOC (4) holds given a revenue
share s3f and an estimated output elasticity v;X. Any misspecification—of the FOC, the
production function, or the econometrics of estimating the production function—or mismea-
surement of the factor shares gets pushed into the residual markup. We return regularly to
this concern about mismeasurement and misspecification. As we highlight, each choice in

implementing the FOC involves additional sets of assumptions.



2 The garden of forking paths

Estimating markups from the production approach appears straightforward at first glance.
The central first-order condition, equation (4), offers a simple prescription: For a flexible
input, the markup equals the ratio of its output elasticity to its revenue share. Translating
this equation into empirical practice requires a series of decisions. A body of evidence
shows that these decisions can substantially influence the results. What seems like a clean,

mechanical implementation quickly gives way to a garden of forking paths.

This section highlights two important forks in that garden—two decisions that every re-
searcher must make when applying the production approach: (1) which input to use, and
(2) how flexibly to specify technology. These forks are not exhaustive but they are illustra-
tive: Each has been studied empirically using variants of the same data, and each has been

shown to materially affect the estimated markups.

The primary goal of this section is to provide a high-level overview of these decision points,
using existing studies that offer direct comparisons. We focus on cases where researchers
apply multiple choices within the same empirical setting, allowing clean contrasts. For the
most part, we defer interpretation of discrepancies until later sections. A secondary goal is
to highlight uncertainty about estimates of the level and trend in production-based markups.

It is easy to find plausible specifications in which markups are relatively constant.

The rest of the review then digs deeper into the sensitivity to these two decisions and

examines additional decisions and forks for which the literature has not yet provided evidence.

2.1 First fork: Which input to use for the production approach?

Having chosen the production approach, the researcher faces a deceptively simple question:

Which input should be used to infer the markup?

In principle, any fully flexible input should yield the same markup. In practice, markup
estimates based on different inputs often diverge in both levels and trends. We highlight
this first fork because, in many applications of the production approach, the input choice is

unexamined: An input is simply asserted as the relevant flexible input.

Table 1a presents results from three papers that compare markup estimates from different
inputs using the same dataset. These choices lead to different conclusions about market

power and motivate our subsequent deeper dive into theory, measurement, and estimation.

10



Table 1a: Garden of Forking Paths

First Fork: which input to use for the production approach?

Production-Based Markups using Different Inputs

Raval (2023) Labor

Materials

Increase of 90%
Decrease of 20%
Decrease of 30%
Decrease of 40%
Decrease of 10%

U.S. (1970-2010)
Chile (1978 1996)
Colombia (1978-1996)
India (19982014)
Indonesia (1991-2000)

Doraszelski & Jaumandreu (2019)

Decrease of 50%
Increase of 15%
Increase of 10%
No change
Increase of 5%

Materials

Labor
Spain (1990-2012) Exporters charge higher
markups
Raval (2023) Energy

Exporters charge smaller
markups

Non-Energy (Raw) Materials

Increase of 20%
Decrease of 70%
Decrease of 25%
Increase of 40%

Chile (1978-1996)
Colombia (1978 1996)
India (1998-2014)
Indonesia (1991-2000)

Traina (2018) Cost of Goods Sold

Increase of 15%
Increase of 20%
Increase of 5%
Decrease of 5%

Operating Expenses

Compustat, 1950-2016 Increase: 1.19 to 1.45

Increase: 1.15 to 1.17

Sources: Figures 2 and 5 from Raval (2023), Table 1 from Doraszelski & Jaumandreu
(2019), and Figure 2 from Traina (2018). Percentages rounded to nearest 5%.

Raval (2023) uses manufacturing census data from five countries to show that labor- and

materials-based markup estimates are not just noisy proxies for the same object—they im-

ply opposite trends. For example, U.S. labor-based markups nearly double between 1970
and 2010, while materials-based markups fall in half. In Chile and Colombia, labor-based

markups fall while materials-based markups rise. Within all five countries, labor and materi-

als markups are negatively correlated across firms, both in levels and trends. These patterns

persist across various specifications and estimation methods.

This choice of input also matters for purely cross-sectional comparisons: Doraszelski and

Jaumandreu (2019) compare exporters and non-exporters in Spain, and find that conclusions

about which group charges higher markups depend on the input used in the production

11



approach. Their headline result is striking: exporters appear to charge higher markups
when the production approach is applied to labor, but appear to charge lower markups if

the production approach is applied to materials.

Even when materials are split into subsets, markup trends differ sharply by subset. As Table
la shows with additional results from Raval (2023), markup estimates based on energy versus
non-energy (raw) materials yield divergent conclusions. In Chile both series rise, but in
Colombia estimated markups based on energy fall 70% while markups based on non-energy
materials rise 20%. In India and Indonesia, the markup trends switch signs. As it is not
obvious how to rank the relative flexibility of energy and non-energy raw materials, these
patterns are important to note because input flexibility is often assumed, not demonstrated.
For instance, implementations of the production approach often use materials—rather than,
say, labor—on the asserted grounds that materials are more flexible. Hence it is important

to note that even within materials, markup estimates can diverge across subsets.

While the preceding studies leverage detailed census-type manufacturing data that cleanly
separate inputs into categories like capital, labor, and materials, many applied papers esti-
mating production-based markups rely on financial statement data, which offer less granular
classifications. A widely used source is Compustat, which reports standardized accounting
data for publicly traded U.S. firms. Within Compustat, inputs are not classified by produc-
tion function categories but by accounting definitions. The most relevant measures are Cost
of Goods Sold (COGS) and Selling, General, and Administrative Expenses (SGA), which are
sometimes combined into Operating Expenses (OPEX). COGS generally reflects expendi-
tures directly tied to production; SGA captures administrative expenses such as advertising,

management salaries, and office costs. OPEX aggregates both.

The final row of Table 1a highlights the sensitivity of markup trends to input definitions in
financial data. Traina (2018) finds that omitting SGA expenses—and thus focusing only on
COGS—TIeads to higher markup estimates. Using Compustat data from 1950 to 2016, the
markup series based solely on COGS implies a substantial rise in markups, from 1.19 in 1950
to 1.45 in 2016. The series based on OPEX suggests that markups were lower and nearly
flat, rising from 1.15 to 1.17. Including SGA wipes out most of the rise.

All the papers referenced in this section reinforce the same lesson: the choice of inputs
shapes substantive conclusions about markups. While the logic of the production approach
suggests that any flexible input should yield the same markup, different inputs—whether
labor, materials, energy, or accounting aggregates—often imply divergent trends. In practice,

input flexibility may vary across sectors, time horizons, or even firm size. Nearly any input is

12



likely subject to some frictions, such as adjustment costs, long-term contracts, or institutional
constraints. Before formalizing how we might think about these concerns, we highlight one

more important choice in the garden of forking paths.

2.2 Second fork: How flexibly to model output elasticities?

Having chosen the production approach and a flexible input, the researcher confronts a second
fork: how to estimate that input’s output elasticity? The choice of a production function and
the granularity of estimation determines how much output elasticities can vary across firms
and over time. For example, the Cobb-Douglas production function (12) restricts output
elasticities 7% to be common across firms and time. If this specification is too restrictive,

genuine variation in output elasticities will be forced into estimated markups.

Given this concern, researchers often allow more flexibility in the production technology. One
approach is to let Cobb-Douglas elasticities vary across time or more granular firm groups
(e.g., narrower industries). Another is to move beyond Cobb-Douglas. A CES production
function allows for non-unitary substitution between inputs. Even more general, a translog is
a second-order approximation to any arbitrary production technology.?® Researchers can also
relax assumptions on productivity. For instance, one generalization is to allow productivity
to be a vector, Ay = (AL, AL), where A is Hicks-neutral and A} is labor augmenting
productivity. The general production function becomes Y;; = A7 F (K, AX Ly, M;;). A CES
implementation would parametrize F'(-) as a CES function so that

o—1 o—1

o—1 =1 A o'(:l
Y, = Ag [(1 —ap—an)K,” + o (AiLtLit) 7+ oM, ] ) (13)

With this technology, output elasticities depend on input intensity as well as A%. We defer

a more complete discussion of flexible production functions to Section 3.2.

A researcher at this fork must specify a production technology and also decide how to
estimate it, which we discuss in Section 5. We can avoid estimation if the production
function has constant returns to scale, (7;; = 1). Then output elasticities are given by cost
shares: vX = ¢ (as discussed around equation (11)). If (vy; # 1), however, then variation
in returns to scale will be misattributed to changes in markups, an artifact of the estimation

method rather than a reflection of actual market power.

Table 1b documents the consequences of different elasticity estimation strategies in three

studies that apply multiple approaches to the same data. The divergences underscore a

YWith two inputs, the baseline translog with Hicks-Neutral technology is vi; = ao + axki + arly +
%BKK (kit)2+ Brpkitlis+ %BLL (I;t)?+aiz, so it includes squared and cross terms. Here, input intensity informs
variation in production technology. For instance, the output elasticity for labor is 74 = ar, + Brx kit + Brrlic-
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central challenge: the output elasticity is not observed but inferred. Because markups are the
residual that makes the FOC hold, any slip in measuring elasticities or specifying technology

shows up one-for-one in the markup.
Table 1b: Garden of Forking Paths

Second Fork: how to estimate the output elasticity for a given input?

De Loecker, Eeckhout & Unger (2024)
Compustat, 1955-2016
Cost Share Cobb-Douglas Overhead

Increase: 1.35 to 1.75 Increase: 1.25 to 1.61 Increase: 1 to 1.32

Foster, Haltiwanger & Tuttle (2024)
U.S. Manuf., 1977-2012

Cost Share Cobb-Douglas Translog
4-digit industry Increase: 1.25 to 1.5 Stable: 1.25 to 1.25 Decrease: 1 to 0.99
2-digit industry Increase: 1.4 to 1.8  Increase: 1.35 to 1.48  Increase: 1.3 to 1.6
Demirer (2025) Cobb-Douglas Labor-augmenting
US (1961-2018) Increase: 1.30 to 1.50  Increase: 1.25 to 1.30
Chile (1979-1996) Increase: 1.35 to 1.40 Decrease: 1.26 to 1.22
Colombia (1978-1991) Stable: 1.40 to 1.40  Decrease: 1.30 to 1.28
India (1998-2014) Stable: 1.31 to 1.31  Increase: 1.20 to 1.29
Turkey (1983-2000) Increase: 1.25 to 1.31  Decrease: 1.20 to 1.10

Sources: Figures TA, 1 and 8A from De Loecker, Eeckhout & Unger (2024), Table 2 from
Foster, Haltiwanger & Tuttle (2024), and Figures 6 and OA-5 from Demirer (2025). De
Loecker, Eeckhout & Unger (2024) use cost of goods sold as the flexible input. Foster,
Haltiwanger & Tuttle (2024) use materials. Demirer (2025) uses the combination of labor
and materials.

De Loecker et al. (2020) find that markups in the U.S. corporate sector rose from 1955 to 2016
under a range of approaches. They focus on COGS as the variable input; their benchmark
specification assumes a Cobb-Douglas production function with elasticities that vary across
two-digit NAICS industries and over time.'® Under this specification, estimated markups
increase from 1.25 in 1980 to 1.61 in 2016. When the output elasticity is held fixed at its
historical cost-share average (the first column; the cost-share average is 0.85), the resulting
markup series follows a similar trajectory—suggesting that rising markups are not merely

an artifact of the elasticity rising over time. Even when they extend the production function

10For example, manufacturing is divided into three groups, NAICS 31, 32, and 33, so that, say, steel
refineries and auto plants are assumed to share the same Cobb-Douglas technology.
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to include a fixed (overhead) input, the upward trend in markups remains.*

In contrast to the consistent markup rise in De Loecker et al. (2020), Foster et al. (2024)
find that alternative methods of estimating output elasticities can flip the story. Using U.S.
Census of Manufacturing plant data (1977-2012), with materials as the flexible input, they
compare markup trends across two dimensions in Table 1b: (i) estimation methods (cost-
share proxy, Cobb-Douglas, and translog); and (ii) aggregation (coarser 2-digit industries, as
in Compustat, versus finer 4-digit industries). With cost-share proxies, markup levels and
trends are stable across both aggregation levels. Once elasticities are estimated, robustness
vanishes. Under Cobb-Douglas, 2-digit industries show markups rising (1.35 — 1.48), while
4-digit industries show no change (steady at 1.25). Under translog, the split is even sharper:
a sizeable markup rise (1.3 — 1.6) at the 2-digit level versus stability (1.0 — 0.99) at the
4-digit level. Since the underlying plant-level revenue shares are identical, the divergences
reflect how estimation methods reassign trends between technology (output elasticities) and

demand (markups).

Demirer (2025) also highlights the role of technology versus demand. He finds that markup
trends can reverse direction depending on whether production is modeled with Hicks-neutral
or labor-augmenting technology. Across countries, Cobb-Douglas with Hicks-neutral tech-
nology consistently produces higher markup levels and stronger upward trends than the
labor-augmenting alternative. Specifically, in U.S. manufacturing, Cobb-Douglas implies a
markup rise from 1.30 to 1.50 between 1961 and 2018, whereas labor augmenting implies
a modest increase from 1.25 to 1.30. In Chile and Turkey, the trends flip—rising under
Cobb-Douglas but falling under labor-augmenting CES. These results echo findings from
other studies in this section: subtle changes to functional form or elasticity assumptions can

have first-order consequences for inferred market power.

Taken together, divergent trends across methods mean that apparently rising markups could
signal changing technology or misspecification, not market power. The divergence highlights
a central tension at the heart of the production approach: output elasticities are not di-
rectly observed but must be estimated, and markups are residuals pinned down by the FOC.
Restrictive functional forms, coarse aggregation, or ignoring factor-augmenting technology
all translate directly into biased markup estimates. The divergence in trends across elastic-
ity estimation strategies is not just a technical nuisance; it fundamentally complicates the

interpretation of rising markups.

1 This specification, which they call PF2, includes SGA as a productive input along with COGS and
capital. It is similar to the Traina (2018) OPEX specification from Table la, except that they do not
combine COGS and SGA. Unlike Traina, they still find a sharply rising markup.
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3 Conceptual rationales for the garden

All the studies reviewed in the previous section reinforce the same central lesson: necessary
implementation choices—about inputs, production functions, and estimation—can decisively
shape substantive conclusions about markups. These often divergent markups are rooted in

conceptual tensions that remain unresolved in the empirical literature.

This section highlights two theoretical hypotheses that can help reconcile the discrepancies
from the garden of forking paths: (1) the central first-order condition could be missing non-
markup frictions and (2) the estimated production technology could be insufficiently flexible.
These two hypotheses can, in principle, generate the empirical divergences, and they both
have support in the literature. They are not the only hypotheses, since there could also be
sources of bias arising from inadequacies in the data (Section 4) or from econometric (not

conceptual) issues in estimating output elasticities (Section 5).

3.1 Do we have the right first-order condition?

The first conceptual hypothesis directly addresses the garden’s puzzle that different inputs
can imply markedly different markup levels and trends. The key FOC assumes a static cost-
minimization problem in which the firm takes input prices as given. If these assumptions

fail, an unobserved wedge ;¥ emerges between the output elasticity v;f and the observed

7
revenue share s;) :'?

Vi = taesi (1+73) - (14)

Suppose we correctly estimate v;f and observe si;i. The production approach would then

measure the markup 7y as the residual, p;; (1 + 77 ), that makes the FOC (14) hold. This
inference would conflate the true markup ju;; with the input-specific non-markup wedge 7;5 .
Different inputs might have different (unobserved) non-markup wedges and therefore imply

different levels and trends for measured markups 7y, as reported in Table 1a.

These non-markup, input-specific wedges 7;% are often interesting in their own right. They
can arise for at least three reasons. First, even if cost minimization is static, the observed
market price W may not be the allocative price (1 + 75)W:X that the firm responds to
when minimizing costs. Second, the cost-minimization problem might be dynamic, with ;¥
capturing the misspecification from imposing a static framework. Third, 7;¥ may reflect
other forces—such as bargaining or search—that break the tight link between input prices
and input demand in the FOC.

12We follow Doraszelski and Jaumandreu (2019) in writing all deviations from FOC (4) in this form.
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First, one important case arises when observed input costs s; are not the allocative costs
(1+ 775)s; that firms consider in optimization. A large literature, following Restuccia and
Rogerson (2008) and Hsieh and Klenow (2009), argues that frictions—often government
induced—distort input allocation and reduce aggregate productivity. Some such frictions
are reflected in input prices (e.g., cross-firm differences in tariffs or taxes) and are thus
embedded in s, leaving production-based markups unbiased. Others, such as quotas or
regulatory restrictions on firm size, limit input use without being priced into s3; in these
cases, the allocative cost that rationalizes why the firm uses too little of an input includes
an unobserved shadow tax 7;¥. When such wedges differ across inputs, measured markups

1 will diverge in levels and (possibly in) trends, as in Table 1a.

A specific form of static, non-markup wedge comes from market power in input markets

(Robinson, 1933). If the firm faces an upward-sloping input supply curve, hiring more raises

: : X — 8Wi)t((Xit) Xit e :
the wage it must pay. Defining €;; = %, Wk as the elasticity of the wage with respect
v it
X

to employment, input-market power (e; > 0) means the firm acts “as if” the wage were
WX (1 4 €). The result is a “markdown” of the observed wage relative to the marginal
revenue product of the input. Following Dobbelaere and Mairesse (2013), several papers

compare the residuals iy across inputs to quantify input-market power.!3

The misallocation literature reinforces that one FOC cannot separately identify two un-
knowns. In that literature, FOC (14) is often used to measure unobserved distortions rather
than production-based markups. Following Hsieh and Klenow (2009), researchers typically
assume that output elasticities v and markups p; are common across groups of firms. Any
cross-firm differences in revenue shares s;X are then attributed to differences in firm-specific
distortions (1 4 7;f). Without additional data or modeling, one cannot say how much of
a wedge comes from heterogeneous markups versus other frictions. Since heterogeneous
markups themselves cause misallocation, they could be folded into the broader category of
distortions driving wedges in marginal products.!* Even so, while a markup is one type of

distortion, not all distortions are markups.

A second possibility is that the cost-minimization problem is inherently dynamic, yet the
researcher imposes a static framework. One dynamic problem is costly adjustment of inputs:
today’s choices—such as investment in a fixed factor—affect future production costs. As Basu
and Fernald (2002) and Doraszelski and Jaumandreu (2019) note, the resulting “shadow”

13Studies of labor-market power have a long history (Manning, 2003, e.g.,). Recent examples include
Dobbelaere and Mairesse (2013); Berger et al. (2022); Yeh et al. (2022); Jarosch et al. (2024); Kirov and
Traina (2022); Rubens (2023).

14Restuccia and Rogerson (2017) survey the misallocation literature. Peters (2020); Edmond et al. (2023);
Baqaee and Farhi (2020); Baqaee et al. (2024) discuss misallocation arising from markups.
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input price can still be expressed as WX (1 + 1), where W is the frictionless user cost of
the fixed input. In general, this wedge 7;¥ depends on stocks, flows, and expectations. The

resulting factor-demand equation retains the form of (14).1

Adjustment-cost wedges and misallocation wedges both produce (14), but they differ in ef-
ficiency implications: adjustment costs are not inherently inefficient (Asker et al., 2014).
Capital is the classic example, but other inputs may face adjustment costs as well. Cooper
et al. (2024) find that labor adjustment costs are important—and rising—in U.S. manufac-
turing. Ignoring these costs and treating labor as fully flexible yields “substantial and rising
dispersion in production-based markups without any variation in actual markups” (p.21).
Even materials and other intermediate inputs may face dynamic frictions, as in Liu and
Tsyvinski (2024), with supply-chain disruptions and delivery lags offering further evidence
(Dhyne et al., 2022; Acemoglu and Tahbaz-Salehi, 2025).

Another dynamic concern is that 7;¥ may reflect mismeasurement of the allocative wage
rather than a friction per se. Most employment relationships are long-term. From an implicit-
contracts perspective, Hall (1980) argues that wages “should be viewed as an installment
payment on the firm’s long-term obligation to the worker” (p.101). The allocative shadow
cost may differ substantially from the observed installment payment (Basu and House, 2016;
Kudlyak, 2024). Related issues arise in the literature on relational contracts in repeated firm-
to-firm transactions.'® Using observed revenue shares instead of allocative ones effectively

introduces a time-varying Tli( .

Finally, the firm’s optimization problem may not take the form of (2) at all, as with wage-
bargaining and rent-sharing.!'” Suppose the wage is set to split the surplus from a match,
where the worker’s outside option is U;. The total surplus equals the marginal revenue

product, (%%) minus the outside option. The worker’s share is 5; so the wage is
7 3

(15)

Pt OF,
Wf:Uﬁ@t( ! Ut)

i 0Xi

Rearranging with ; # 0 yields

fyff = ,uitsff (1 +Tff) , where (1 +Tff) = {% _ <1 ;f;:) (%)] ) (16)

15Berndt and Fuss (1986) and Hulten (1986) discuss adjustment costs in growth accounting. Basu et al.
(2001, p.245) and Doraszelski and Jaumandreu (2019) consider them in the production approach to markups.

6Rosen (1985) surveys implicit contracts in labor markets. Macchiavello and Morjaria (2023) survey
relational contracts between firms. One form of restriction is quantity constraints, which create an unobserved
shadow price analogous to that in the misallocation literature.

1"Rogerson et al. (2005) survey search-and-matching models of the labor market. These models are also
inherently dynamic, with different specifications of the bargaining process.
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Here, (1 + 777) is endogenous, but the equation still takes the form of (14). Changes in

bargaining power or outside options will then appear as changes in the estimated markup.

This discussion of the FOC underscores the need to choose inputs that plausibly satisfy the
production approach’s assumptions. Deviations from frictionless input markets are likely
widespread. Differences in estimated markups across inputs—such as in Tables 1a and 1b—
may therefore reflect differences in unobserved wedges 7;X. That divergence is itself a signal
of frictions or misspecification, not necessarily of markups. The policy implications differ: is
the wedge a markup, a markdown, a regulation, or a misspecification? The answer matters

for how we read the evidence—and for what we do about it.

3.2 Are we modeling production in a sufficiently flexible way?

A second conceptual hypothesis for the input discrepancies in the garden is that the assumed
production function is too restrictive. Consider an estimated output elasticity i = X that
is constant across firms and over time.'® Since the markup is inferred as a residual from the
FOC, ji;; = %, the inferred markups /i;; would capture 100% of both the cross-sectional and
the time-series variation in the flexible factor’s revenue share six. A falling labor share, for
instance, would immediately imply higher markups because changes in production technology

are ruled out by assumption.

A production function that is too restrictive can also help rationalize why different inputs
might imply different levels and trends of markups, as in Table la. Suppose labor and
materials are both fully flexible and satisfy the cost-minimizing condition (4). Let X denote
the markup estimated using input X. For each firm ¢, the ratio of the estimated FOCs for

labor to materials exactly satisfies:

it P _ i (17)
si bl A

With Cobb-Douglas estimated at the industry level, the right-hand side is constant across
firms, so jk/pM soaks up all variation in sk/sM. If firms truly share the same Cobb-
Douglas function, that variation in % /4 is measurement error. If not, the restriction

forces technology differences into the markup ratio.

We could permit more variability in output elasticities through two main approaches: esti-
mating at a finer level of aggregation or using a more flexible functional form. Each offers

different degrees of freedom for elasticities to explain variation in revenue shares.

18F.g., many comparisons in Tables 1a impose a common Cobb-Douglas function for all firms in an industry.
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One simple fix is to estimate elasticities at finer industry levels. Even with a Cobb-Douglas
form, allowing coefficients to vary across four-digit industries rather than pooling at two digits
lets elasticities explain more of the observed variation in factor shares. Coarser estimates risk
conflating markup and technology heterogeneity. Table 1b shows exactly this: at two digits
markups rise, at four digits they don’t—evidence that coarser elasticities force technology

variation into measured markups (Foster et al., 2024).

Doraszelski and Jaumandreu (2019), Raval (2023), and Demirer (2025) go further, ar-
guing that the resolution is to use a more flexible functional form and to relax Hicks-
neutrality. Labor-augmenting technical progress can potentially resolve the markup dis-
crepancies in both Tables 1a and 1b—even when inputs are fully flexible and do not face
non-markup wedges 7;X. Suppose the production function is CES with labor-augmenting

technical progress, as in (13). Then the ratio (17) becomes:

o—1

L ~L Y
Sit Mgt 67) Ly 7 J A=
. - == (AR 18

Relative output elasticities (v /v4) now depend on relative factor intensities (L;/M;) and
labor-augmenting productivity A%. Even if AL is common across firms within a period (i.e.,
AL = AL), this extra degree of freedom can explain variation in relative factor costs instead
of forcing it into markup differences. Demirer (2025) finds that allowing for labor-augmenting
productivity reduces estimated markup levels and flattens their upward trend compared with

Cobb-Douglas or Hicks-neutral CES/translog specifications.®

A more flexible production function can give 4% /4% more scope to fit the data. Three

questions guide this choice:
e At what level of aggregation should industries be grouped for estimation?
e How flexible should the production function be?
e Is productivity Hicks-neutral, or input-biased (e.g., labor-augmenting)?

Each can matter through the same mechanism: allowing output elasticities to vary more
across firms. When elasticities vary, differences in revenue shares can be attributed to tech-

nology rather than to markups.

19The labor-augmenting view rests on difficult-to-test assumptions about the nature of productivity. Since
at least Solow (1957) and Sato (1967), it has been recognized that technological bias is difficult to distinguish
from differential patterns of substitution.
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3.3 Takeaways from the garden of forking paths

The garden of forking paths illustrates that disparate markup trends need not be mere sta-
tistical noise—they can reflect genuine conceptual choices. The forks matter, and researchers

face several options for navigating them.

First, the choice of input should be grounded in a persuasive case that the central FOC is
likely to hold. This requires arguing from institutional detail rather than default conven-
tions. In some contexts, that might mean focusing on a subset of materials—such as energy
inputs in industries where they are purchased on competitive spot markets—or on categories
of labor, such as temporary or seasonal workers, whose wages are more likely to reflect con-
temporaneous market conditions than long-term contracts (e.g., van Heuvelen et al. 2021).
Making the case for flexibility is ultimately about convincing the reader that the observed

input price is the allocative one to which the firm responds when minimizing costs.

Second, when plausible frictions—such as input market power, adjustment costs, or reg-
ulatory constraints—threaten the link between the first-order condition and markups, the
researcher may need to add more structure to the estimation by modeling the source of the
wedge.?’ One can use two inputs to estimate two frictions (e.g., markups and markdowns);
or incorporate dynamic optimization to account for capital or labor adjustment costs; or use
auxiliary data to calibrate or instrument for these frictions.?! Such structure can help avoid

loading non-markup distortions into the measured markup.

Third, researchers can choose a production technology that is sufficiently flexible to explain
variation in revenue shares without forcing it into the markup residual. This might involve
estimating elasticities at a more granular industry level, moving beyond Cobb-Douglas to
CES or translog specifications, or allowing for input-augmenting technical change. These
choices expand the scope for output elasticities to capture genuine technological heterogeneity

so it is not mistaken for market power.

Ultimately, these three strategies—carefully justifying the chosen input, explicitly model-
ing relevant frictions, and modeling production more flexibly—are ways of navigating the

garden’s forks with transparency and discipline.

20E.g., Choi et al. (2024) model product-market power, input-market power, and input-specific distortions
inside the same FOC, identifying two with model structure and inferring one as a residual.

2 Examples of each approach include Dobbelaere and Mairesse (2013); Doraszelski and Jaumandreu (2019);
Kirov and Traina (2022); Cooper et al. (2024).
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4 The data constraint

Implementing the production approach runs into two practical problems beyond the con-
ceptual forks discussed in Sections 2 and 3: data limitations (this section) and econometric
identification (Section 5). We need good data and sound econometrics to estimate produc-
tion functions and output elasticities. Estimating production functions in micro data has
always been hard (Griliches and Mairesse, 1998)—and it still is, even with new datasets and

techniques. These difficulties may help explain why markup estimates diverge across studies.

The production approach requires two ingredients: a revenue share s and an output elas-
ticity ;. The revenue share might seem straightforward but isn’t always. For the FOC to
hold, data should be at the level where firms optimize—establishments or firms. Microdata
have long fallen short of theoretical ideals (Grunfeld and Griliches, 1960). Researchers face a

tradeoff: sound microfoundations or high-quality measurement—they can rarely have both.

We start with simple simulations of how bad data can lead to biased markup estimates—
through mismeasured revenue shares, cost shares, or output elasticities. We then draw
lessons from both the Jorgenson-Griliches tradition of aggregate data and the industrial
organization experience with firm-level analysis. Finally, we examine specific challenges in

modern microdata when it comes to markup estimation.

4.1 The quantitative importance of measurement

Why do data problems matter for markup estimation? The production markup ji;; is the
ratio of an estimated output elasticity 4;f to a measured revenue share sii. This ratio
structure means measurement errors can distort markups in predictable ways. Consider two
fundamental measurement challenges: systematic undermeasurement of inputs and classical

measurement error.

First, micro datasets consistently miss some inputs. Proprietary software, informal labor
arrangements, and other intangibles often don’t appear in production surveys. When esti-
mating markups, mismeasurement of factor shares is a first-order problem—it directly affects
the denominator of the markup ratio. The effect on the markup estimate depends on how we
estimate the output elasticity. For now, suppose we know that returns to scale are constant.
As discussed in Section 1.2, with constant returns the markup is simply revenue divided by
total cost: fi; = Py Y;/Costy. If revenue exceeds total costs, then the firm earns profits from

charging a markup (see equation (9)).?? If we miss any inputs, we’ll understate economic

22With constant returns, it is equivalent to focus on a single input. E.g., with materials 'yi],V/I = cf‘t/[ , where
cM is materials’ share of total costs. The measured markup is ji;; = ¢M /5M | but since both numerator and
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costs and overstate the markup.

A simple example illustrates the consequences for markups. Consider a representative firm
with true markup p = 1.2 and cost shares ¢¥ = 0.5, ¢ = 0.3, ¢/ = 0.2. What happens

when we undermeasure output or each input by 10%?

Table 3: Impact of 10% Systematic Undermeasurement on Markup Estimates

Missing Input Measured Markup Bias
None (truth) 1.20 0%
Output 1.08 -10%
Materials 1.26 +5%
Labor 1.24 +3%
Capital 1.22 +2%

Note: Measured markup with cost shares is given by Revenue/Cost. Undermeasuring
output directly affects revenue. Underestimating inputs affects measured costs.

Missing output decreases markups proportionally. Missing any input increases them. The

bias approximately equals the input’s cost share times the measurement error.?

If we estimate output elasticities through regression rather than cost shares, we face a stan-
dard omitted variable problem. All regression coefficients can be biased. Assuming we
estimate a Cobb-Douglas function (12) and use materials to estimate the markup, we need
its coefficient v*. Omitting some portion of, say, intangible capital biases 4. With OLS,
the bias depends on the partial correlation of the omitted K with M, given other included
variables. Because this is a conditional correlation, this bias can be positive or negative even

if the unconditional correlation of the omitted K and M is positive.

Second, micro datasets may not only omit relevant variables but also provide noisy measures
of the variables we do observe. Since production functions have multiple regressors (inputs),
classical measurement error attenuates the noisy regressor’s own coefficient; measurement

error in other, correlated regressors can push its estimate up.

To see the mechanics clearly, consider the case where only materials is measured with classical
error: m = m + U, (where m = In M and w,, is mean-zero, independent), while labor and
capital are measured precisely. The OLS estimate of the materials coefficient—assuming the

inputs are exogenous and E[e;|M;, L;, K;| = 0—converges to:

m _ Var(m|l, k)
Var(ml|(, k) 4 o2

plim(4") = 4 (19)

denominator include WZJtV[ My, they cancel, yielding fi;; = P;;Y;t/Costiy.
ZMeasuring input j as X7 = (1+¢) X7 yields markup i = u/(1+ec’) with an error of about —ec? percent.

23



2

Um

where o2 is the measurement error variance and ¢ = In L, k = In K. For illustration, sup-
pose measurement error variance equals 10% of the conditional variance of log materials—
then the attenuation factor is 1/(1 + 0.1) = 0.91, so the materials elasticity gets biased
downward by about 9%. Since markups are calculated as u = v /s this 9% understate-
ment of the elasticity translates directly into a 9% understatement of the markup (assuming

the revenue share is measured without error).

When multiple inputs are mismeasured, the story becomes more complex. Measurement
error in labor can partially offset materials” attenuation if the inputs are positively correlated,
as OLS incorrectly attributes some of labor’s productive contribution to materials. When
noise obscures labor’s true variation, OLS sees materials varying when labor should be
varying, and assigns that productive variation to materials instead. With typical production
correlations, this upward push from labor’s measurement error could partially or even fully

offset materials’ own attenuation.

Capital measurement presents special challenges. Book values, depreciation schedules, and
missing intangibles mean capital likely has the largest measurement error of any input.
Collard-Wexler and De Loecker (2016) find through Monte Carlo under their calibration
that when measurement error variance equals 40% of capital’s conditional variance, capital
coefficients can be biased downward by a factor of two. For the materials coefficient, capital’s
measurement error creates indirect effects that depend on how strongly materials correlates
with capital. Since capital adjusts slowly while materials responds to current conditions,
capital’s correlation with flexible inputs like materials may be weaker than the materials-
labor correlation. The net effect on markups depends on these offsetting forces: direct
attenuation from materials’ measurement error versus indirect effects from mismeasured
labor and capital. Without knowing the actual measurement error variances and input

correlations in a dataset, the direction of bias remains ambiguous.

These calculations likely understate the full complexity. With non-classical measurement
error, omitted variables, or more sophisticated estimation methods like GMM, the biases
become harder to predict and could go in either direction. Even in this simplified example,
plausible measurement error levels can generate substantial markup biases—a 10% measure-
ment error in materials alone creates nearly 10% downward bias in markups, while realistic
combinations of measurement error across all inputs could shift markup estimates by 5-15%
under reasonable calibrations. Given that many markup studies find changes of similar mag-
nitudes over time or across industries, measurement error may drive some of the variation

we attribute to real economic forces.
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4.2 Lessons from economic measurement

Both macroeconomics and industrial organization faced a parallel challenge in the mid-20th
century: interpreting residuals that mixed true economic phenomena with measurement
artifacts. In macroeconomics, the puzzle was aggregate TFP. In industrial organization, it
was profit rates and their relationship to market power. Both fields eventually concluded that
improving data quality and measurement was a high-return investment, but they diverged

sharply in their approaches.

The macroeconomic challenge emerged when Solow (1957) found capital per hour explained
only 12 percent of U.S. output-per-hour growth from 1909 to 1949. Jorgenson and Griliches
(1967) hypothesized that the residual 88 percent (TFP) reflected measurement error in out-
put and inputs. Jorgenson and Griliches presents a “manifesto” (Berman and Jaffe, 2024,

p.579) for improving measurement.*

Their main approach was to apply index-number implications of neoclassical production
theory. They introduced Divisia (chained) measures of aggregate output and argued for
hedonic adjustments to prices. They weighted hours of workers with different education
or experience by relative wages. Similarly, they weighted different types of machines and

structures by user-costs (implicit rental rates), capturing differences in marginal products.

Many of these ideas have subsequently been implemented in industry and aggregate data.
At an industry or aggregate level, researchers can use survey methods (such as quality-
adjusted price indices) that would be challenging to implement at a firm level, and they
can combine multiple datasets. Measurement error at a micro level might cancel out when
aggregated (Grunfeld and Griliches, 1960). Because of the easier availability and higher
quality of industry data, the early implementations of the production approach to markups

used industry data (Section 1.2).

Industrial organization had its own measurement crisis. Following Bain (1951), researchers
spent a quarter-century documenting correlations between industry concentration and ac-
counting profit rates (Bresnahan, 1989; Schmalensee, 1989). The goal of this “structure-
conduct-performance” (SCP) paradigm was to infer market power. Did concentrated indus-

tries earn supernormal returns through anticompetitive conduct?

24Measurement progress since the 1960s owes much to Jorgenson and Griliches, whose contributions ex-
tend well beyond their joint work. Griliches emphasized microdata, while Jorgenson focused on macrodata,
including industry aggregates (Berman and Jaffe, 2024; Fernald, 2024). Despite these advances, their hy-
pothesis that TFP is merely measurement error falls short: from 1948-2024, TFP still accounts for roughly
half of labor-productivity growth (Fernald, 2014).
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The SCP paradigm failed on two fronts. First, conceptually, it suffered from causal ambigu-
ity. A positive correlation between concentration and profits could reflect collusion (the SCP
story) or, as Demsetz (1973) argues, it could reflect efficiency: productive firms naturally
grow large and earn higher returns. Even with perfect data, the correlation is uninterpretable
without additional economic structure. Second, and more directly relevant for production-
markup estimation, the paradigm relied on accounting profitability measures, which poorly
capture economic returns (Fisher and McGowan, 1983). At best, accounting data provides
markups of price over average variable cost, not the economic marginal cost needed for proper
inference about market power. Capital measurement is especially problematic: risk premia,
inflation, depreciation rules, and the treatment of intangibles all drive wedges between ac-
counting profitability and true economic returns. These aren’t just historical concerns—the
same measurement problems persist in the production approach to markups, notably if one

uses cost shares. One needs all inputs and their economic costs.

Both fields responded to measurement challenges, though with divergent strategies. Macroe-
conomists and national accountants applied sophisticated surveys and statistical- and index-
number methods to improve industry and aggregate data. The aim was partly descriptive—
to better track the economy—and partly analytical: shrink the TFP residual and better
estimate production functions (e.g., Jorgenson et al. (1987)). IO economists took a differ-
ent path: they sought granular data within specific industries where prices and quantities
could be observed separately, and developed structural models to identify the underlying
economic forces. This approach allowed researchers to understand industry-specific account-
ing practices, institutional details, and competitive dynamics that affect how data should be
interpreted—knowledge lost in aggregate approaches. Rather than inferring market power
from aggregate patterns, modern IO uses detailed institutional knowledge about market
structure, contracts, and competitive dynamics to discipline the analysis. The goal was to

learn rigorously from carefully chosen case studies.

This history shapes how IO economists view production-based markups (Berry et al., 2019).
The production approach avoids SCP’s problematic causal claims—it doesn’t regress prof-
its on concentration. However, when revenue shares are measured and output elasticities
estimated using book values of capital and accounting measures of costs, they inherit the
measurement issues that undercut earlier attempts to infer economic fundamentals from ac-
counting data. The same problems—depreciation schedules, missing intangibles, inflation
adjustments, the gap between average and marginal costs—that prevented SCP from accu-
rately measuring economic profitability now affect the production approach’s estimates of
output elasticities. An open question is the degree to which variation in markup estimates

reflects these longstanding measurement artifacts.
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4.3 Measurement challenges in microdata

With this backdrop—that measurement error complicates markup estimation—micro-level
datasets are increasingly available. They still fall far short of the theoretical ideal. These
datasets typically collect variables for accounting purposes rather than production estima-

tion, leading to key limitations recognized since at least Griliches and Ringstad (1971).

Revenue vs. quantity data: Most micro datasets contain information on revenues, not
quantities and (quality-adjusted) prices. In U.S. microdata, both Compustat and individual
U.S. Censuses of different sectors offer disproportionately revenue-based measures of output.
Separating output price from quantity is possible, but only for a small share of the economy.
For instance, Foster et al. (2008) study 11 products from the manufacturing census, including
coffee, ready-mixed concrete, and motor gasoline.?’ Such data are generally unavailable at

a scale that would facilitate studying broad sectors or the economy as a whole.

When Foster et al. (2008) can separate prices from quantities in their 11 products, they
uncover a striking puzzle: physical productivity is inversely correlated with price, yet revenue
productivity is positively correlated with price. How can the same underlying efficiency
generate opposite correlations? The answer reveals why revenue data confounds production
function estimation. A physically productive firm has lower costs and can profitably charge
less—hence the negative price correlation. Revenue productivity (nominal output, Pj;Y,
per unit of input) mixes efficiency with pricing power. High revenue productivity might
reflect genuine efficiency or simply high markups. Without observing prices and quantities
separately, we risk conflating operational excellence and market power. We return to this

challenge in Section 5.2

Input quality and coverage: Microdata rarely have direct information on input quality.
This biases estimates of production functions and productivity across firms (Fox and Smeets,
2011; Grieco et al., 2016). Sometimes inputs themselves aren’t even recorded. For instance,
Autor et al. (2020) study labor shares in U.S. Census microdata for six large sectors; only
in manufacturing can they construct labor shares of value added, as most sectoral Census
microdata don’t contain systematic information on intermediates. Even in manufacturing,

the data miss inputs of business services.

25Gurvey data from other countries—for instance Colombia and India—sometimes separate output price
from quantity. And many customs datasets used in international trade have unit values.

Z6Research from other countries reinforces these concerns. For example, Lenzu et al. (2023) combine
firm-level output prices and quantities with quasi-experimental variation in credit supply for Belgian firms
to show that financial shocks have different effects on physical and revenue productivity. Revenue-based
measures underestimate the long-run elasticity of physical productivity to credit supply by almost half.
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Capital measurement: Micro datasets often provide only book values of capital—historical
purchase prices adjusted by accounting depreciation rules—rather than economic values re-
flecting productive capacity. Book values can diverge dramatically from productive input:
a fully depreciated but still-productive machine shows zero book value; an obsolete asset

purchased recently maintains high book value.

This problem intensifies with intangible assets. A growing literature focuses on measuring
intangible capital beyond just software and R&D, including assets such as brand equity and
organizational capital (Corrado et al., 2009). These intangibles typically appear in account-
ing data as operating expenses—R&D, marketing, management consulting. Economically,
they create durable productive assets that should be capitalized. Karabarbounis and Neiman
(2019) show that what they call “factorless income” (the apparent profits after subtracting
measured payments to labor and capital from GDP) has grown substantially. This could
reflect true profits from market power (as the cost-share approach would imply). Or it could
reflect that our discount rate was too low. Or it could represent returns to unmeasured
intangible capital. In terms of the latter, expensing rather than capitalizing intangibles
overstates the apparent profit rate: costs appear lower than they truly are because we miss
the implicit rental cost of intangible capital. Under the cost-share approach, this inflated

profit rate translates directly into inflated markup estimates.

4.4 Representativeness and coverage issues

Even if we could measure everything perfectly at the firm level, would it tell us about the
aggregate economy? For macroeconomists, the ideal micro dataset would offer not just

high-quality measurement but also broad coverage across the economy.

The U.S. Census of Manufactures has been the primary fuel for macroeconomists (Dunne
et al., 1988; Baily et al., 1992; Foster et al., 2008; Syverson, 2011). Manufacturing is now less
representative, accounting for only about 12 percent of U.S. private-industry value added
(circa 2020, BEA). If manufacturing markups differ systematically from those in services or

finance, we're learning about a shrinking slice of the economy.

This sectoral shift matters for measurement too. Manufacturing firms have relatively clear
distinctions between production workers and overhead, between raw materials and admin-
istrative expenses. Service firms blur these boundaries. A software engineer at Google—
production labor or overhead? As the economy shifts toward services, accounting categories
designed for manufacturing become less economically meaningful. Still, U.S. Census micro-
data remains best-in-class internationally, and researchers are beginning to exploit within-

sector detail such as transaction data from FEurope that capture firm-to-firm input linkages.
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Given manufacturing’s declining share, researchers increasingly turn to Compustat, which
has broad sectoral coverage and is easy to access. De Loecker et al. (2020) show how to
use Compustat’s accounting measures for markup estimation. Compustat covers only public
firms, which account for only half of industry sales as reported in the national accounts (circa
2015). Some 40 percent of sales in Compustat today come from foreign operations (2020s).
Several papers (Ali et al., 2008; Keil, 2017; Decker and Williams, 2023) find that common
concentration measures at the 4-digit NAICS level are weakly correlated with those based

on the more comprehensive economic census.

Compustat’s accounting detail offers both advantages and challenges for markup estimation.
Under Generally Accepted Accounting Principles (GAAP), firms classify costs as either Cost
of Goods Sold (COGS) or Selling, General, and Administrative (SG&A) expenses. COGS in-
cludes direct materials, direct labor, and manufacturing overhead—costs directly attributed
to producing goods. SG&A captures expenses not directly tied to production: executive
salaries, marketing, research and development, and administrative overhead. De Loecker
et al. (2020) leverage this distinction by treating COGS as the flexible input and excluding
SG&A entirely from the production function.

These accounting rules exist for inventory valuation and tax purposes, not economic analysis.
Traina (2018) shows this classification matters enormously: including SG&A with COGS as
the flexible input eliminates most of the rise in estimated markups since 1980. Consider a firm
with COGS of $70 million and SG&A of $20 million generating $100 million in revenue. The
flexible input share is either 0.70 (COGS only) or 0.90 (COGS+SG&A)—implying markups
could be 43% or 11% for the same output elasticity, assuming v = 1 for this composite flexible
input. The COGS share of total costs has declined substantially over recent decades. Is this
rising market power or accounting reclassification? Without understanding firms’ specific
accounting choices and how they’ve evolved over time, we cannot tell. The important research
question that motivated Jorgenson and Griliches (1967) remains, especially in microdata: To

what degree does input mismeasurement drive our results?

Bridging micro and macro Whatever the dataset, researchers must take a stand on
fundamental measurement issues: defining industries over which production function co-
efficients are constant, measuring capital (Hall and Jorgenson, 1967; Becker et al., 2006),
determining the correct measure of labor (Fox and Smeets, 2011), handling multi-product

firms (De Loecker, 2011a), and choosing between plant- or firm-level analysis.

For any dataset, researchers should report how the data, once aggregated, compare with
published totals as standard descriptive statistics. Fernald and Piga (2023) find that factor
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shares are wildly different in the U.S. Census of Manufacturers from those in the national
accounts. In 1977, labor’s share of value added in manufacturing plants was only 31 per-
cent, as opposed to 58 percent in the manufacturing sector of the national-accounts-based
BEA-BLS KLEMS dataset. Such large discrepancies in factor shares translate directly into
different markup estimates—what looks like a high markup might just be missing labor com-
pensation or business services. Even when inputs are measured correctly in nominal terms,
using industry-wide deflators instead of firm-specific prices can bias elasticities downward,

particularly for labor (Ornaghi, 2006).

The gap between micro data and National Accounts reflects more than just coverage. Na-
tional Accounts integrate multiple data sources—tax records for proprietors’ income, bank-
ing surveys for financial services, innovation surveys for R&D—that researchers rarely access
when working with micro data. These auxiliary datasets help split proprietors’ income be-
tween labor and capital compensation, allocate business services across industries, and cap-
ture intangible investments. Without understanding this multi-source integration process,
researchers might incorrectly expect their micro data to aggregate to published totals, when
in fact the National Accounts rest on a broader empirical foundation guided by accounting

identities and economic theory.

What to do about measurement challenges Given these pervasive measurement is-
sues, three approaches stand out. First, the Jorgenson-Griliches agenda of improving under-
lying data remains as relevant today as in 1967. Better measurement of inputs—especially
capital services, intangible investments, and the boundary between production and over-
head labor—would strengthen the foundation for production-based markup estimation. As
Griliches and Mairesse (1998) emphasized, we particularly need better firm-level price data.
Lev (2001) documents how traditional accounting overlooks intangible capital, from R&D

and software to organizational capital and brand value.

Second, researchers should systematically consider how specific measurement errors might
shape their results. If markups differ across industries, could this reflect differences in mea-
surement quality rather than competitive conditions? Testing alternative input definitions

and accounting treatments helps rule out measurement-driven explanations.

Third, econometric methods can partially address measurement error. Several papers show
that correcting for capital mismeasurement can nearly double estimated capital elasticities
(Lizal and Galusédk, 2012; Collard-Wexler and De Loecker, 2016; Kim et al., 2016). While
these methods cannot fully overcome poor data, they can help separate noise from true
economic signals. The key insight is that measurement challenges are not mere nuisances—

they fundamentally shape what we can learn about markups using the production approach.
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5 Practice and pitfalls in estimating output elasticities

This section builds on the discussion of data constraints and the garden of forking paths by
focusing on the estimation of output elasticities. Even after identifying a flexible input, the
method used to estimate its elasticity can substantially affect both the elasticity itself and the
markup inferred from the production-based FOC (4), as Table 1b illustrated. A fundamental
tension complicates this task: many of the tools for estimating production functions were
developed not only for a world of perfect data, but also of perfect competition. Yet our goal
is to measure departures from unity—markups that arise under imperfect competition. We

organize our discussion of these estimation challenges in three steps.

First, we highlight endogeneity as the central concern. Input choices typically respond
to unobserved productivity shocks, biasing naive OLS estimates of output elasticities. To
make this point transparently, we focus on a benchmark case in which all firms share a
canonical Cobb-Douglas production function. This parametric setting allows us to isolate
key econometric challenges and show how data limitations exacerbate them. The canon-
ical “transmission bias” is just the first layer of a deeper problem. Most datasets record
only revenue—not separate prices and quantities—shifting endogeneity concerns from unob-
served productivity to unobserved “revenue productivity” shaped by demand forces. These

limitations compound the endogeneity problems.

Second, we outline and provide a critical tour of the econometric tools developed to
address these forms of endogeneity. We discuss instrumental variables, control function ap-
proaches, and dynamic panel methods. Each addresses different aspects of the identification
challenge, but each carries its own set of strong assumptions and potential pitfalls. A key
recurring concern is that, because of their historical origin for competitive settings, estima-
tors of output elasticities themselves often depend on markups (i.e., the level of true markup
affects the estimated output elasticity), creating a circularity problem that is difficult to

resolve: we need to know markups to estimate output elasticities, which we then use to infer
markups from FOC (4).

Third, we return to the practical question of how flexibly to specify the production
technology itself. Assumptions like constant returns to scale (CRS) or value-added pro-
duction simplify estimation and, in some cases, improve identification. Yet these restrictions
are strong: CRS imposes that marginal and average costs are equal, and value-added mod-
els effectively rely on a Leontief structure that is rarely realistic at the firm level. Such
assumptions risk conflating technological heterogeneity with variation in markups. At the

same time, relaxing these restrictions introduces substantial complexity and new estimation
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challenges. The key takeaway is that there is no one-size-fits-all approach—careful, trans-
parent modeling choices, combined with robustness checks and recent diagnostic tools, can

help balance tractability with economic realism.

The applied economist has a rich toolbox for addressing these challenges. However, the
tools involve tradeoffs. Some tools are restrictive for an industrial organization economist
who wants to remain agnostic about the structure of production and competition. Others
are overly general for a macroeconomist who wants to develop or calibrate fully specified
structural models. In both cases, a world of imperfect competition calls for enriching the

traditional toolkit, and the first step is a clear-eyed understanding of its limitations.

5.1 The anatomy of endogeneity

Many of the econometric challenges to estimating output elasticities—and the potential tools
for overcoming those challenges—can be seen in the conditional demand for a flexible input.
To be concrete, consider the Cobb-Douglas production function (12). Assuming materials,
m;, are flexibly chosen, the first-order condition (3) defines their conditional demand as:
miy = ﬁ (ai + pie +log ™ —wh —log pua + 7 kir + 7 1) | (20)
with a; the firm’s (log) productivity, pi; the (log) output price, w} the price of materials,
ki; and I;; as the labor and capital inputs, and v* for X € {K, L, M} as the output elas-
ticities. This equation shows how multiple unobservables simultaneously determine a firm’s
input choices. The markup pu;; enters negatively because higher markups reduce optimal
input usage: when firms charge prices above marginal cost, they restrict output below the
competitive level and thus demand fewer inputs. For a given markup, a higher price leads

firms to want to sell more.

Transmission bias The canonical concern for estimating output elasticities is the trans-
mission bias from unobserved productivity a; to inputs: a; enters both the production
function (12) and the firm’s optimal materials choice in (20). A firm that receives a positive
productivity shock will, all else equal, use more materials. The resulting correlation between
the input m;; and the unobserved error component a;; violates the OLS exclusion restriction
E[mjsa;] = 0. All else equal, a naive OLS estimate of the materials elasticity, ¥, is biased
upward, confounding the true technological parameter with the firm’s endogenous response

to productivity.?” Since the production approach calculates markups as p; = 3™ /sM | this

27All else is not always equal. With sticky prices and market power, the bias can be more complex. If all
firms receive the same positive productivity shock but cannot adjust prices, markups rise (as marginal costs
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confounding translates directly into biased markups. Intuitively, because higher a; induces
higher m;;, OLS attributes their correlation to technology and overstates 3; dividing by

sM then overstates ji;;, making OLS a (weak) upper bound.

Omitted price bias The problem deepens because most datasets provide firm revenue,
not separate prices and quantities. Let r; = p; + y;; denote the firm’s log revenue. Adding
price p; to both sides of the production function (12), the estimating equation becomes:

rie = v ki + "l v ma 4+ ai + par. (21)
Prices p;; join productivity a;; as unobserved determinants in both the estimating equation
(21) and the materials demand (20). Firm-specific demand shocks that affect prices also
affect input choices, creating a second layer of endogeneity. Estimating this revenue produc-
tion function via OLS therefore confounds the technological parameter v with endogenous
input responses to both productivity a; and non-technological forces that influence output

prices py—including competition.

The omitted price bias leads to a troubling circularity: output elasticities are contaminated
by the very markups we seek to estimate. Under standard models of imperfect competition,
firms set prices as a markup over marginal cost, so in logs p;; = log p;;+log \;;. As aresult, the
error term embeds markup variation both directly (through pricing) and indirectly (through
correlations between markups and productivity). Because input choices also respond to
markups (see (20)), regressors correlate with the markup-contaminated error. We thus need
to know markups to estimate output elasticities correctly (by accounting for the markup’s
effect on prices in the error), and we need those elasticities to estimate markups (via the

production-approach FOC).

Given these challenges, researchers often turn to simple fixes, but these are generally inad-
equate. A common approach is to deflate firm revenues using an industry-level price index,
Py, leaving firm-level deviations, p;; = p; — pi, embedded in the error term. Under perfect
competition, firms charge the same quality-adjusted price. Then p; is uncorrelated with
input choices; and, indeed, if price gaps mostly reflect quality, revenue productivity may be
the relevant object (De Loecker et al., 2016). But under imperfect competition—the case
of interest—Klette and Griliches (1996) show that output prices and input choices are neg-
atively correlated. As more productive firms charge lower prices and produce more, output

elasticities are then biased downward alongside the inferred markups.

fall while prices remain fixed), dampening input demand through the log y;; term. This creates an opposing
bias, leaving the overall effect ambiguous and showing how market frictions can alter the bias.
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Indeed, Bond et al. (2021) argue that production-based markups estimated from revenue data
are uninformative about the level of true markups. The key insight is that with revenue data,
~revenue, X

the regression recovers a revenue elasticity 4, = v /i that conflates the true output

elasticity 7z and the true markup j;;. Recall that the revenue share of a flexible input equals

. .. WX X, .
the ratio of an output elasticity and a markup, s; = Pl'ttY;t = i /jir. Therefore, using a
T 2
. . . . . . X .
revenue elasticity to infer a production-based markup, fievenie = 472V /sX — 1 yields no

information about market power. Extending Bond et al. (2021), Hashemi et al. (2022) show
that industry-level deflation resolves the issue only in the special case of perfect competition

or identical firm-level prices—precisely when markups equal one.

Collecting firm-specific price data to render p;; observable would address this problem di-
rectly. Such efforts are increasingly feasible and valuable. Manufacturing and trade datasets
now sometimes contain quantity information, particularly for homogeneous goods where
units of output are well-defined. Services remain challenging (what’s a unit of healthcare?)
as do differentiated products. Still, when available, such data provide validation of revenue-

based estimates and help researchers understand the magnitude of potential biases.

An emerging literature using data that distinguishes prices from quantities at a firm level
shows that the difference between physical and revenue productivity matters for measuring
markup levels and, at times, their trends. Using simulations and data from French manu-
facturing firms where unit prices can be constructed, De Ridder et al. (2024) provide the
most systematic assessment. Their simulations focus on a repeated, static oligopoly model
(both Cournot and Bertrand cases), yielding a 0.9 correlation between revenue-based and
true log markups. In the French data, however, the correlation is only 0.3. This gap suggests
that the true magnitude of the bias depends on the specifics of demand, competition, and
production parameters. Given all the other moving parts to estimation, the biases might
offset or compound in complex ways. Still, De Ridder et al. (2024) provide insights and,

more importantly, a template for examining these biases in specific settings.

More generally, the concerns about endogeneity extend to other unobservables, creating addi-
tional confounding forces that bias the estimated output elasticities and hence the measured
markups. A common and closely related one arises if we only observe expenditures on inputs

(eM = wM + my). In this case, the revenue production function is:
rie =Y ki + 7"l + M el + a4+ pi — M wj (22)

The unobserved, firm-specific input price, w)!, now also enters the error term. If firms with
more materials market power face lower input prices and thus purchase more inputs, this

creates another source of endogeneity, as discussed in section 3.1.
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To see the full scope of the confounding problem, consider the error term we face. From

equation (22), the error term in our revenue-based estimating equation is:
eit = Qg + i — 7wy (23)

Any method for estimating v must confront this composite error, where each component
represents a different confounding force. The traditional solutions in the next section—
instruments, control functions, dynamic panels—were designed for a world where €;; = a;,
addressing only the first layer of confounding. But in the real world of revenue data and
unobserved prices, these methods must somehow address all three confounding components.
Looking back at our materials demand equation (20), we see the fundamental tension: every
component of this composite error drives input choice, yet all are unobserved. The very
flexibility that makes materials suitable for the FOC approach ensures they respond to
forces we cannot measure. As we’ll see, this is a formidable challenge that existing methods

only partially address.

5.2 Estimating output elasticities: Solutions

The literature has developed a range of tools to address the confounding problem. The
stakes are high: in practice, the biases can be substantial. For pedagogical clarity, our tour
of the main approaches evaluates how each handles the two primary layers of endogeneity:
unobserved productivity (a;;) and unobserved output prices (p;;). While the third layer—
unobserved input prices—is a real concern, we focus on the first two layers and note where

input-price issues arise.

Fixed effects introduce firm-specific intercepts a; to control for fixed firm characteristics
(Mundlak, 1961). These intercepts absorb time-invariant productivity a; and, with the com-
posite error, also time-invariant prices and markups. Historically, econometricians developed
these models for agricultural production where productivity largely reflects time-invariant
characteristics like soil fertility. But in modern applications, unobserved productivity likely
includes both a fixed and a time-varying component a; = a; +e;. Similarly, prices may have
fixed and time-varying components. Fixed effects remove the combined fixed component

(a; + p;) through demeaning or differencing, but time-varying components remain.

Fixed effects can also exacerbate measurement error, often yielding implausibly low or even
negative capital coefficients. Griliches and Mairesse (1998) document that panel methods

applied to micro-data have produced disappointing results, with unreasonably low capital
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coefficients and implausible returns to scale estimates. One hypothesis is that capital is
a quasi-fixed input—responding slowly to productivity shocks at annual horizons—so the
within-firm variation is dominated by measurement error.?® This also implies that changes
in capital, which capture depreciation and investment, are potentially contaminated by mea-
surement error. In an in-depth study of capital measurement issues, Becker et al. (2006) find
that different ways of measuring capital that ought to be equivalent, such as using perpetual
inventory methods or inferring capital investment from the capital producing sectors, lead to
different results for a variety of outcomes, including parameter estimates of the production
function and investment patterns. Measurement was the primary reason fixed effects were

largely abandoned for production function estimation (De Loecker and Warzynski, 2012).

Instrumental variables offer the most conceptually straightforward solution. The method
seeks to isolate variation in an input that is orthogonal to the composite error term. To
solve both layers of the problem, a valid instrument z;; must be correlated with the input
choice E[m;;z;] # 0 but strictly uncorrelated with both productivity and prices, such that
E[zit(ay + pir)] = 0. Industry time-series approaches (Section 1.2) typically used aggregate

demand instruments.

Control functions offer a complementary approach to addressing endogeneity using proxy
variables. But whereas instrumental variables are correlated with exogenous input variation
(and thus uncorrelated with productivity), proxy variables are correlated with endogenous
input variation (and thus explicitly correlated with productivity). Key to this approach is the
requirement of monotonicity: productivity’s effect on the proxy must be strictly increasing
or decreasing, allowing us to use information from the proxy variable to control for otherwise

unobserved productivity.

Olley and Pakes (1996) pioneered control functions in the productivity literature. They show
a large class of models implies that, conditional on the capital stock, investment demand
depends monotonically on productivity. This monotonic relationship makes it possible to
invert the investment-demand function and express unobserved productivity as a function

of the observed capital stock k and investment ¢:

i = g(kit, ai) = aiw = g~ (kit, 4t (24)

28The terminology here matters: IO economists typically call capital “quasi-fixed” or “predetermined,”
meaning it doesn’t respond to productivity shocks within the period. This differs from “fixed costs,” which
are overhead expenses necessary to produce at all. The quasi-fixed nature of capital creates econometric
challenges (little useful variation) which, as discussed in section 4.1, can bias all coefficient estimates.
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Substituting out unobserved productivity a; in the production function (12) with the control

function g=!(ky, i) yields an estimable equation that is entirely a function of observables:
Yir = Y ki + Y L+ Y mi + g7 (Kiy i) (25)

As investment is often lumpy and infrequent, Levinsohn and Petrin (2003) proposed using

intermediate inputs as an alternative proxy.

Intermediate inputs are typically adjusted more smoothly than investment, have fewer con-
founding determinants (e.g., any serially correlated unobservable), and can respond more
directly to productivity shocks (think using more steel when you run extra shifts in the
factory). To see how materials can proxy for productivity, start from our parametric mate-
rials demand equation (20). If—for the moment—we assume perfect competition (p;; = 1),
common input prices, and hold labor and capital fixed at their observed values, materials
demand simplifies to:

mi = h(km Lit; ait) (26)

where the semicolon indicates that k; and [;; are held fixed. If this function is monotonic in
a;;, we can invert it:

Qi = hil(kita Lit; Mit), (27)

and the inverted function h™'(kj, l;; mi) expresses unobserved productivity in terms of

observables while avoiding the pitfalls associated with using investment.

In addition to the earlier requirement of monotonicity, inversion of input demand also requires
that productivity is the only unobserved factor affecting investment or materials decisions
(i.e., the “scalar unobservable” assumption). In other words, forces like demand shocks or
measurement error cannot independently drive the proxy. With revenue productivity a;; + pi:
in the error, this assumption becomes problematic: if firms’ investment or materials choices
respond to demand conditions that affect prices, the control function cannot be inverted.
Note also that if prices and productivity move in opposite directions—the Klette-Griliches
logic where more productive firms charge lower prices—the composite revenue productivity

may fail to be monotonic in a;, further undermining the invertibility of the control function.

Control functions rely on two more assumptions. First, productivity follows a Markov pro-
cess: today’s productivity depends only on yesterday’s productivity. This process puts only
limited structure on how productivity evolves but is a key facilitator of the implementa-

tion discussed below. Second, any difference between observed output and output predicted

29Tt’s possible to control for productivity within the subset of observations with nonzero investment.
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by the model is assumed to represent either measurement error or a productivity innova-
tion that occurs after inputs are chosen. In this way, missing structural determinants (e.g.,

misspecification of the production process) are assumed not to play a role.
With these assumptions, control functions are implemented as follows:

1. Regress output flexibly on inputs and the control variable (e.g., with a third-order

polynomial) to estimate the combined production and control function:
Yit = Ge(Kit, i, Mg, 13t) + €it (28)

where ¢:(-) = Y5k + Y5l + YMmi + g7 (ki ). The residual €; is interpreted
as measurement error. Why? If the control function perfectly captures productivity
(the scalar unobservable assumption), then the equation should fit exactly except for
measurement error. The fitted value ¢;; = ¢;(-) thus provides output “cleaned” of
measurement error. Importantly, this step does not identify any individual production
function parameters since we cannot separately identify v™m;, from the part of g71(-)

that depends on materials.

2. For any candidate set of production function parameters (v%,~v%,v™), back out pro-

ductivity as the difference between cleaned output from step 1 and predicted output:
ai(v) = Gie — 7 kie — 7"l — 7 mae. (29)

3. Since productivity is Markovian, regress it on its lag to decompose it into its predictable
component and its innovation: a; = f(@;4—1)+ &i. As the innovation &; is orthogonal
to inputs chosen before the innovation is realized, lagged inputs z;;—; form the basis
of moment conditions for estimation: E[£;:(7) - zi1—1] = 0. These moments identify

production-function parameters through GMM or similar methods.

But here’s another place where the omitted price bias can pose a problem. With
revenue data, we're not recovering physical productivity a; but revenue productivity
a;y + pi. The control function approach works if this composite follows a Markov
process, but that requires both productivity and prices to evolve in a coordinated
way. When demand shocks affect prices independently of productivity, the Markov

assumption likely fails and the moment conditions become invalid.

Though widely used, control function methods face identification challenges even apart from
omitted prices. The output elasticity of a flexible input—precisely the sort needed for markup

inference in equation (3)—turns out to be underidentified in many standard settings. The
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identification challenge comes from the dual roles played by a proxy variable in estimation:
(i) accounting for unobserved productivity and (ii) generating input variation that identifies
the output elasticity. If a control variable can be flexibly adjusted, then it fully reflects
variation in productivity. When materials optimally adjust to productivity, they become
collinear with it, leaving no variation to identify the materials elasticity. Ackerberg et al.
(2015) address this point by assuming labor is chosen before materials, though this shifts
rather than solves the problem. In a GMM framework, this lack of variation means some of
the moment conditions are redundant, causing identification to fail. Ackerberg et al. (2015),
building on an earlier insight in Bond and S6derbom (2005), elaborate on these concerns for
value-added production functions. Gandhi et al. (2020) show identification concerns of this

sort are even more severe in gross-output settings.

While remedies exist to restore identification, many violate assumptions behind the inference
of production-based markups. For instance, Bond and Séderbom (2005) show frictions and
adjustment costs can help generate identifying variation for production-function estimation.
But the production-based markups in equation (3) should be inferred from a flexibly ad-
justed input. Similarly, Gandhi et al. (2020) propose using a competitive firm’s first-order
condition equating the flexible input’s output elasticity to its revenue share as an additional
moment to recover identification. But this method assumes perfect competition, creating
another circularity problem: markup estimation requires production function parameters,

which themselves assume perfect competition (u; = 1).

Identification problems compound when firms do not flexibly adjust output in response to
productivity shocks. An empirical and theoretical macro literature argues that, because
of sticky prices or inelastic short-run demand (e.g., Gali, 1999; Basu et al., 2006), when
productivity improves, firms might first reduce the use of a flexible input and then, with a
lag, increase it. Customer-market frictions provide another reason: building relationships
takes time, preventing immediate output expansion. This would violate the control-function
monotonicity assumption. While such effects are well-documented in industry and aggregate

data, they could, in principle, also arise in microdata.

Doraszelski and Jaumandreu (2019) argue that imperfect competition undermines the control-
function approach: if firms’ input choices depend on both productivity and unobserved
markup determinants (such as demand conditions and firm conduct), the control function
becomes uninvertible and cannot fully capture unobserved productivity. In such cases, Acker-
berg et al. (2007) show that two independent controls are needed to account for the two
latent state variables. One proposal is to use market shares as an additional control (e.g.,
De Loecker et al., 2020; De Ridder et al., 2024), though this requires assumptions about the
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competitive environment that dilute the appeal of a production-based approach rooted solely
in cost minimization. More generally, incorporating non-price variables into the control func-
tion can proxy for unobserved firm-specific prices. For instance, De Loecker et al. (2020) use
revenue market shares, while Kirov et al. (2025) advocate including fixed effects and observ-
able price controls directly in the first-order conditions (see also Kasahara and Sugita 2020;
Ackerberg and De Loecker 2024). These strategies capture the price variation that drives
input choices, but their validity rests on assumptions about firm behavior (e.g., Bertrand
or Cournot competition)—precisely the structural detail the production approach aims to
remain agnostic about. If such assumptions are indispensable, it may be more transparent

to estimate production jointly with models of demand and competition.3°

Dynamic panel methods offer an alternative that does not require the scalar unobserv-
able assumption from the earlier discussion. These methods replace the control-function
approach’s informational assumptions with alternative assumptions about the time-series

properties of unobservables. Consider a first-differenced production function:
Ayir = 7" Dk + " Aly + 4™ Amgy + Aay. (30)

If a;; follows an AR(1) process, a; = pa;i—1 + €, then Aay = pAa;;—1 + Acy. Inputs
from ¢ — 2 are now valid instruments for differenced inputs because they are uncorrelated
with productivity innovation Ae;; but correlated with current inputs via persistence. This
generates moment conditions like E[A¢;; - m; ;o] = 0. System GMM combines these differ-
enced equations with level equations to improve efficiency (Blundell and Bond, 1998, 2000;
Arellano and Bond, 1991).

With revenue data, however, the error term is Aa; + Apy; the validity of lagged inputs as
instruments requires that both productivity and demand shocks follow similar time-series
processes. This requirement seems implausible when demand responds to different forces
than productivity. Moreover, if productivity follows a more complex process than AR(1)—
say a;; = pga%’t_l + p1a;—1 + €i—then the “innovation” includes predictable components
that are correlated with lagged inputs, invalidating the moment conditions. As Bond and
Soderbom (2005) argue, these lagged instruments typically only have identifying power if
there are frictions like adjustment costs. However, such frictions violate the static first-order

condition that underpins the markup calculation itself.

Recent work has refined these methods, but there remains ample scope for further research.

30A subtler risk is overfitting: an ideal control function uses proxies correlated with omitted prices but not
directly determined by them, an exclusion restriction of sorts. See Kirov et al. (2025) for further discussion.

40



Brand (2019) proposes a method that treats observed output as a noisy signal of productiv-
ity, allowing unobservables to evolve nonlinearly. We can use lagged output as an instrument
to distinguish current productivity from measurement error, provided productivity is persis-
tent and measurement error is not (and with at least three periods of data). More generally,
a valuable validation of dynamic-panel methods would use firm-level datasets that separate
output prices from quantities to assess whether physical and revenue productivity measures
have time-series properties consistent with the approach. After all, those assumptions un-
derpin confidence in the estimated output elasticities—and hence in any markups inferred

through the production approach.

Structural demand modeling addresses the problem of omitted prices by deriving esti-
mating equations that can be written in terms of observed revenue rather than unobserved
quantity of output. For instance, as originally suggested by Klette and Griliches (1996), we
could specify an isoelastic CES demand curve, here with 7 as the price elasticity of residual

demand and p; and ¥, as industry quantity and price indexes:

Yit = Yt — n(pu - pt)- (31)

By combining this demand curve with the production function (12), we can derive a revenue-

based estimating equation:

—1 -1 -1 1 -1
Tit — Dt = 77771( ki + 77771; L + UTVM My + 5 Y + 7 7 At (32)
—— ——— —— ~—
ﬁK ﬁL ﬂ]\/l BY

This framework lets us recover revenue elasticities $ using methods like the control function
approach. We can then separate output elasticities v from the demand elasticity n: v =
B xn/(n—1). While the above illustration uses the case of CES demand, similar ideas
can be applied with richer models of demand. De Loecker (2011a) extend this approach
to multiproduct firms; Ruzic and Ho (2021) and Choi et al. (2024) extend the method to
models of heterogeneous markups and oligopolistic competition. Richer demand models

(nested logit, random coefficients) provide more flexible substitution patterns.

Jointly estimating production and demand models not only addresses concerns regarding
missing prices (through structural assumptions on demand), but also allows for counter-
factual exercises. At the same time, structural modeling of demand undermines one of the
production approach’s key appeals: estimating markups without specifying market structure.

If we must assume Bertrand competition or CES demand to estimate v, we've essentially
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returned to traditional IO methods where markups depend on our demand and conduct
modeling choices. The cost of the approach, as with traditional IO demand estimation, is
that markups are functions of the model structure and counterfactual conclusions regarding
market power are conditional on this specified demand and conduct. The benefit is trans-
parency: assumptions are explicit rather than buried in econometric fixes, and a fuller model

is more suitable for counterfactual analysis.

Each proposed solution in this section grapples with the same core challenge: the error term
contains revenue productivity a; + p;, not just productivity. Fixed effects and deflation work
only under restrictive conditions. Instrumental variables need exogenous variation uncorre-
lated with both productivity and prices—a high bar. Control functions assume productivity
is the sole unobservable, failing when demand affects input choices. Dynamic panels rely on
assumptions about the evolution of multiple unobservables. Joint estimation addresses these

issues by imposing structure but sacrifices the model-free appeal of the production approach.

Most solutions add frictions or structure that weaken the premise and the appeal of the
production approach to markups. The ultimate choice of estimation strategy depends on
the research question, the institutional setting and the available data. Each method makes
different compromises between identification and the assumptions underlying markup infer-
ence. The apparent simplicity of needing just one output elasticity masks the full complexity
of the identification problem—properly estimating that elasticity requires confronting all the

challenges of production function estimation under imperfect competition.

5.3 Market power vs. technology, redux: Issues of specification

Despite the appeal of modeling output elasticities more flexibly—discussed in Section 3.2—

practical specification choices affect how we separate market power from technology.

Returns to scale: Constant or not? A common technology restriction is to impose
constant returns to scale (CRS). For a range of approaches, CRS simplifies the estimation
and identification of output elasticities. However, any true heterogeneity of returns to scale—

in the cross section or the time series—risks being interpreted as heterogeneity in markups.

A prime example of how CRS simplifies the estimation of output elasticities is with cost
shares. As discussed in Sections 1.2 and 2, under CRS the output elasticity ;i equals
the factor’s share in costs c¢. Cost shares elegantly address many challenges raised in
this section: endogeneity (cost shares are equilibrium outcomes requiring no production

function estimation), missing prices (we compare cost shares to revenue shares directly), and
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functional-form flexibility (the FOC holds for any production function).?! As a complement

to other approaches, showing results with cost shares is a useful robustness exercise.

However, measuring total cost—the denominator of the cost share—poses practical chal-
lenges. The primary issue, and a key reason IO moved away from cost-share approaches,
is the measurement of capital and its user cost. As highlighted in Sections 3 and 4, capi-
tal quantities in microdata are prone to significant measurement error. Economically, most
capital is owned rather than rented at observable market rates, so user costs must be im-
puted and firm-specific risk premia incorporated. A large finance literature shows that these
premia can be as variable as productivity itself. In addition, non-markup wedges (1 + 7;)
in the FOC (14)—such as adjustment costs or other shadow costs—must also be accounted

for. Omitting these unobserved wedges risks understating costs and overstating markups.

The CRS assumption is also frequently used to make the estimation of more flexible produc-
tion functions more tractable. CES or translog, for instance, are attractive a priori because
they allow more flexibility in output elasticities across producers. However, a two-input
translog (as in footnote 9) has six parameters (one constant term, two linear terms, three
quadratic terms); three inputs has 10 parameters (one constant, three linear, six quadratic);
four inputs has 15 (one constant, four linear, 10 quadratic). Imposing constant returns to
scale and perfect competition introduces cross-parameter restrictions that reduce the param-
eter space and make estimation more tractable (e.g., Jorgenson et al. 1987). For example,

output elasticities, which are functions of the parameters, need to sum to one under CRS.

Flynn et al. (2019) also show that CRS can resolve identification problems with control-
function identification. Namely, when lagged flexible inputs are used as instruments in the
presence of markups the estimated markup distribution exhibits spurious skewness. Restric-
tions on returns to scale, such as CRS, resolve the identification problem and achieve more

accurate markup estimates.

However, the CRS assumption is theoretically substantive and empirically underexplored.
With CRS, marginal cost equals average cost and equation (9) shows that the markup
maps one-to-one to the implied rate of economic profits. Some firm and industry data do
suggest that returns to scale are, on average, close to constant (McAdam et al., 2024; Basu
et al., 2006). However, any heterogeneity in returns to scale will be assigned to markups.
Furthermore, research also suggests that variation in returns to scale, across industries and
across time, can simultaneously rationalize long-run trends in factor shares and improve the

measurement of misallocation (Ruzic and Ho, 2021).

31Because of firm-level measurement error, some practitioners average shares within an industry. But that
returns us to the problem that true variations in output elasticity will be labeled as variations in markups.
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Gross output or value added? Another common technology restriction that simplifies
estimation is a value-added production function. If production is Leontief, so intermediates
and value added are used in fixed proportions (perfect complements), we can write gross

output Y as a function of intermediates M;;, a value-added function F'(-), and a constant a:
Yiy = min{a My, F(Ki, Lit, Air) }- (33)

By excluding intermediate inputs, value added reduces the dimensionality of the estimation

problem. We do not need to separately identify elasticities for intermediates.

However, the strong Leontief assumption is probably not a realistic representation of tech-
nology. Otherwise, as Basu and Fernald (1995) and Basu and Fernald (1997) emphasize,
value-added models implicitly assume that intermediate inputs are paid their marginal prod-
ucts, even when firms exercise market power. But markups drive a wedge between marginal
products and factor payments, and some of the productive contribution of intermediates
is incorrectly embedded in measured value added. Empirically, this misspecification can
be substantial: Gandhi et al. (2017) find that imposing a value-added structure inflates
measured productivity dispersion by a factor of five relative to a gross-output specification.
Moreover, this value added specification assumes that intermediates are equally substitutable
with capital and with labor. Ruzic (2024) provides evidence that intermediates dispropor-
tionately displace labor relative to capital—even for the aggregate economy—in a way that

is inconsistent with value-added specifications of production.

On the whole, separating technology from market power requires careful judgment and rea-
soning. We want to be flexible enough with our technology specification to capture true
shifts, especially over time, but not so flexible that it assumes away the possibility of market
power. Recent work offers guidance: Foster et al. (2024) demonstrate how granular indus-
try estimates can reverse aggregate trends, while Raval (2023) develops tests for production
function stability. These advances help researchers navigate the flexibility-precision tradeoff.
But these don’t work well in micro-data cross-sections or short panels (De Loecker, 2011b).

Finding such instruments in firm-level data is difficult.

The input demand equation (20) reveals exactly what instruments could theoretically work.
Any shifter of input demand that doesn’t appear in the production function is a potential
instrument. Looking at the equation, valid instruments include input prices (w}!), the
markup (u;), and the output price (p;)—but of course the latter two are unobserved and
part of what we're trying to measure. Predetermined inputs (k;, l;;) appear in both the

demand equation and the production function, so they cannot serve as instruments. This
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leaves input prices as the primary candidate. While firm-specific input prices can work when
available (e.g., Doraszelski and Jaumandreu, 2013), they are often weak or potentially invalid
if correlated with local demand shocks that also affect output prices (Gandhi et al., 2020).32
Despite the limitations, instrument relevance is testable, and these approaches have seen

renewed interest where input prices are strong instruments.

6 A Call to Arms

We began this review with a reference to a unifying FOC that highlights the close relationship
between revenue shares, output elasticities and markups. Prominent papers have used this
relationship to suggest that we live in a world of large and heterogeneous deviations from
perfect competition. This research links these deviations to trends in the macroeconomy,
ranging from slow growth to declining labor shares. Those findings serve as at least a “proof

of concept” that markups could matter for major economic trends.

We end this review by using the same FOC to launch a three-pronged methodological call
to arms. First, and most concretely, we propose that production-based markups be paired
with a simple R? decomposition that quantifies how much of the variation in factor shares
is explained by markups versus output elasticities. Such a decomposition helps assess the
relative importance of demand and technology heterogeneity and provides a check on the
credibility of key assumptions in implementing production-based markups. Second, we en-
courage systematic comparisons of production- and demand-based markups, the latter being
more common in the IO literature. Understanding when the two approaches align would
strengthen confidence in both. Third, we call for more work mapping firm-level markup
heterogeneity into macroeconomic models. Progress requires sharper identification of the
structural forces behind markups and richer analysis of when heterogeneity and production

networks matter for aggregate outcomes.

6.1 Transparency: An R-squared for revenue shares

Our review has returned several times to the question raised by the central FOC: How much of
the observed variation in revenue shares across firms and over time reflects demand-side forces
like markups, and how much reflects differences in technology, such as output elasticities?

Production-approach markups estimate output elasticities and infer markups as residuals.

32Even if a firm takes input prices as given, general equilibrium effects can invalidate them as instruments.
Suppose all firms in a market get a positive productivity shock. If industry demand is not perfectly elastic,
the market price for their output will fall, creating a correlation between the shock a;; and the price p;; that
violates the exogeneity condition.
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The more estimation restricts how much output elasticities can vary, the more variation
in revenue shares gets shifted onto the markup. A priority for the literature is greater
transparency on this front. Such transparency at the firm level complements our earlier

suggestion (Section 4) to benchmark aggregate revenue shares against national accounts.

The R? of a simple linear regression can transparently quantify the extent to which revenue-
share data is being explained by output elasticities versus by markups. Consider the following

regression that can be estimated using ordinary least squares:
lnsff =a—+ Blnpy + e,

with « the constant, 3 the slope coefficient and ¢;; the error term. The R? of this regression
quantifies the share of the total variation in In s} (the total sum of squares in the denom-
inator) that can be linearly explained by the markup In p; (the residual sum of squares in
the numerator). Moreover, since FOC (4) presents a log-linear relationship between revenue

shares sf, markups p;; and the output elasticities 3} :

Insy =In~y;y — Inp, (34)

1 — R? captures the share of residual variation coming from In~;f, after linearly projecting
it onto Inyp;. We can also add fixed effects (e.g., year, industry or year-industry) to the
regression. The within R? and 1 — R? then partition the variation of within-year, within-
industry or within-industry-year revenue shares into those explained by the markups and

those explained by the output elasticities.

Table 2 illustrates the R? decomposition using Compustat data and code from existing
papers. The Markup columns report the R? from the above regression of markups on revenue
shares (without and with industry-year fixed effects). The corresponding Output Elasticity
columns report 1 — R?. Estimates correspond to the headline figure 1 from De Loecker et al.
(2020), which uses Cost of Goods Sold (COGS) as the flexible input. We draw on their

replication code and an online estimation toolbox from De Ridder et al. (2024).

The results in Table 2 suggest that the output elasticities explain remarkably little of the
variation in COGS revenue shares. The lion’s share loads on the residual claimant of FOC
(4), the markup. Consider Figure 1 in De Loecker et al. (2020), which estimates (two-digit)
sector-year Cobb-Douglas output elasticities. As an extreme benchmark, the two right-
hand columns add industry-year fixed effects to regression (34). By construction, the output

elasticities have no explanatory power (the R? is exactly zero), since a single output elasticity
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Table 2: An R? Decomposition of Revenue-Share Variation: Output Elasticities vs Markups

Full Sample Industry-Year
Output Markup Output Markup
Elasticity Elasticity
De Loecker, Eeckhout & Unger (2020)
Replication File
Cobb-Douglas, Industry-Year 0.0102 0.9898 0 1
De Ridder, Grassi & Morzenti (2024)
Markup Toolbox: Translog, 2nd order
No interactions of inputs, Firm-Year 0.0400 0.9600 0.0058 0.9942
Interactions of inputs, Firm-Year 0.1929 0.8071 0.1002 0.8998

Note: Using Compustat data and different approaches to estimating output elasticities,
we report the (within) R? from regressions of form In s = a+ 31n ps + €5 in the Markup
columns. The Output Elasticity columns report 1 minus that R2.

applies to all Compustat firms in a given industry-year. So 100% of the variation in revenue

shares within an industry is attributed to markups.

What is striking is the extent to which the same pattern holds for the full sample (the
first two columns). Time-varying output elasticities can soak up some variation in revenue
shares. But these elasticities explain only 1 percent of the variation in the COGS revenue
share, leaving markups to explain the remaining 99 percent. Similar results hold for our
own calculations where we estimate industry-year elasticities using cost shares under the
additional assumption of constant returns to scale. These results highlight the extent to
which choices made in estimation can restrict the potential for output elasticities, and hence

technology, to explain variation in revenue shares.

A potential way forward is to estimate output elasticities more flexibly. Translog production
functions, which allow estimated coefficients to interact with firm-specific inputs, yield output

elasticities that vary across firms and time.

The results in the bottom half of Table 2 suggest that even this translog approach contin-
ues to assign remarkably little revenue-share variation to output elasticities. In a version
of the De Ridder et al. (2024) code that interacts production-function parameters with in-
dividual inputs and the inputs squared (but not with cross-input interactions), only about
1/2 percent of the within-industry-year variation in revenue shares is explained by output
elasticities. Markups explain 99-1/2 percent, barely different than Cobb-Douglas. Even in
the full sample, the explanatory power is only modestly different from the Cobb-Douglas
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benchmark. In a second version of the translog production function—mow allowing cross-
input interactions—output elasticities account for between 0.1 and 0.2 of the revenue-share
variation, and markups for only .80 to .90. Even with this additional flexibility in estima-
tion, the output elasticities explain rather little of the variation in the data; meanwhile, the

residual claimant that ensures FOC (4) holds—the markup—absorbs most of the variation.

Overall, these results raise an important intellectual question: how much of the variation
in revenue shares across firms should we attribute to demand-side forces like markups and
how much might plausibly reflect variation in technology, such as output elasticities? One
important risk in answering that question is that the parameter that is inferred as a residual

will always have greater explanatory power than the parameter that is estimated directly.

6.2 Validation: Stress-testing market power

Our second call to arms is also straightforward: researchers should look for opportunities to

validate production-based markups.

First, production-based markups complement an extensive industrial-organization literature
on demand-based markups. In principle, both measure the same object: the markup of
price over marginal cost. But they do so through distinct implementations and assumptions.
Comparing results in settings where researchers can apply both offers a valuable robustness
check. When they diverge, the comparison can shed light on misspecification, data limita-
tions, or the economic forces each method captures. When they align, we gain confidence
in the empirical signal. At present, such cross-method validations remain uncommon—and

that is a missed opportunity.

The demand approach derives markups from a model of consumer demand and firm pricing
behavior. It is often tailored to a narrowly defined industry, such as the canonical study
of the automobile market by Berry et al. (1995). Researchers specify a structural demand
system—typically allowing for heterogeneous consumers and flexible substitution across dif-
ferentiated products—and recover price elasticities from observed market shares and prices.
Under an assumed model of firm conduct, often Bertrand competition, these elasticities
yield markups through pricing first-order conditions. For instance, in the baseline case of
a single-product firm facing constant-elasticity demand, the markup is a simple function of
the absolute value of the demand elasticity: p = |n|/(|n| —1). Demand-side markups rely on
rich market-level data and functional-form assumptions about preferences and competition.
This approach enables detailed counterfactual and welfare analysis, but it can be sensitive

to model misspecification and instrument choice.
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Do demand and production approaches yield consistent markup estimates in practice? Re-
cent studies offer mixed answers. Grieco et al. (2024) examine the U.S. automobile industry
from 1980 to 2018 using both methods. Their demand-based estimates show markups de-
clining moderately, while production-based estimates from De Loecker et al. (2020) show
different levels and an upward trend. The authors attribute the divergence to demand-
side improvements in product quality and variety that production methods may not fully
capture—a key insight about what each approach measures. A more reassuring example
comes from De Loecker and Scott (2016) study of the U.S. beer industry, where both meth-
ods deliver broadly similar mean markups with overlapping confidence intervals, at least for

certain years and specifications.

Second, simulation studies help us understand when and why different methods succeed or
fail. By specifying the data-generating process, researchers can evaluate how well production-
based estimators recover known markups under various conditions. For example, section 5
mentioned the Monte Carlo simulations in De Ridder et al. (2024). Those simulations suggest
that, at least in their model environment, using revenue data led to biased markup estimates,
but trends and dispersion remain informative. These kinds of controlled assessments map

out the conditions required for reliable estimation.

Third, quasi-experimental validation offers a path forward. When mergers, trade shocks, or
regulatory changes generate plausibly exogenous shifts in competition, we can test whether
markup estimates detect these changes. Miller et al. (2017) exploit the MillerCoors joint
venture to show that demand-based markups correctly capture the resulting price increases.
Carrillo et al. (2023) use a different approach, showing how exogenous demand shocks from
public procurement contracts for construction services in Ecuador identify features of the
marginal product distribution, testing for misallocation and quantifying welfare losses. Ma-
jerovitz and Hughes (2025) studies misallocation in Sri Lanka’s construction sector using
quasi-experimental variation from government procurement contracts. These settings can
not only help validate production-based methods but, when combined with structural esti-
mation, generate insights about firm behavior under imperfect competition impossible with

reduced-form approaches alone.

Validation should become a standard component of markup estimation research. This does
not mean every paper must implement every validation approach—that would be neither
feasible nor productive. The production approach already demands substantial cross-area
expertise and institutional knowledge, as we’ve highlighted in this review. Research benefits
from specialization: Some researchers can push the frontiers of measurement; others can

focus on validation through demand modeling, experimental design, or simulation methods.
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Studies with access to rich data should compare multiple approaches. Papers introducing
new methods should show performance in simulations. Empirical applications should seek
quasi-experimental corroboration where available. Through this collective effort, we can
build confidence in our measurements of market power and clarify what drives cross-method

differences. The tools exist; we need to use them more systematically.

6.3 Aggregation: Macro implications of micro markups

Our final call to arms is to bridge the micro and the macro. Despite the conceptual and
empirical challenges outlined earlier, the strength of the production approach lies in its
ability to deliver granular markup estimates. To guide future work on how such estimates
can inform an economy’s productivity, welfare, and resilience to shocks, we highlight three
research questions to advance this agenda. First, what economic primitives underlie mea-
sured markups? Second, how much heterogeneity is needed to account for macroeconomic
outcomes? Third, how do markups interact with—and potentially shape—the economy’s

network structure?

First, for many questions in macroeconomics—as in industrial organization—it is not enough
to establish that markups exist. To use them for counterfactual analysis, we need to know
why firms are charging them. Markups can arise from very different primitives: consumer de-
mand elasticities, firm conduct in oligopoly, the presence of fixed costs, or increasing returns
to scale. The production approach, by design, abstracts from these structural underpinnings;
it delivers equilibrium objects, not the reasons behind them. This might make the produc-
tion approach powerful for documenting patterns in the data, but leaves macroeconomists
without guidance for how to embed markups into structural models where the source of

markup rents determines welfare and growth implications.

Quantifying the different economic forces behind markups matters: if we erroneously assign
the entirety of a production-based markup to a single markup mechanism, we risk obtaining
misleading predictions from the fuller model. For instance, markups can represent pure
economic profits—market-power rents that reduce efficiency and justify antitrust concern.
Or, they can be a necessary byproduct of cost recovery or scale economies: firms with high
fixed costs or increasing returns may charge prices above marginal cost without generating
excess profits. If we model production-based markups as though they all stem from one
source—say, barriers to entry—when in fact they are partly compensating for fixed costs
or returns to scale, our counterfactual predictions risk being misleading. Moving forward

on these questions requires treating production parameters themselves, not just the markup
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estimates, as central objects of interest.?3

Future research can help quantify the relative prevalence of “good” and “bad” markups from
the long-standing macro-IO debates. Some rents reflect entry barriers or inefficient firm con-
duct that depresses output and growth (e.g., Bresnahan 1989 and Berry et al. 2019). Others
reflect Schumpeterian incentives for innovation: Aghion et al. (2005) find a U-shaped rela-
tionship between innovation and market power, balancing positive incentives with negative
inefficiency effects (see Gilbert 2006 for a review). Klette and Kortum (2004) model markups
as the return to innovation, as does Peters (2020). More recently, Autor et al. (2020) argue
that the rise of superstar firms with high markups reflects efficient scale and innovation.
Whereas Aghion et al. (2023) argue that comparable markups can instead hinder growth
if they result from process inefficiencies and R&D misallocation, generating "bad” rents.?*
Quantifying the prevalence of different markup motivations can help researchers understand

how to rationalize production-based markups in macroeconomic models.

Second, how much heterogeneity matters for macro outcomes is a central open question. On
the household side, macroeconomists debate whether simplified two-agent New Keynesian
(TANK) models are sufficient to capture meaningful heterogeneity in consumption responses,
or whether richer heterogeneous-agent New Keynesian (HANK) models are required, despite
being less tractable (Gali et al., 2007; Kaplan et al., 2018). A parallel question arises for
firms: do we need the full distribution of markups and production parameters to analyze
macro outcomes, or can simplified representative structures get us “close enough”? This issue
is especially pressing because tractability pushes models toward parsimony, but ignoring key

dimensions of heterogeneity risks distorting counterfactuals.

Thus far, theoretical work has not resolved how to connect micro estimates to representative
macro models. Standard business-cycle and growth models typically rely on a representative
firm producing value added (manufactured by capital and labor, but not intermediates).
The mapping from production-based gross-output markups to such a representative firm is
unclear. For example, Rotemberg and Woodford (1995, 1999) show that strong assumptions
are needed to translate gross-output production with market power into value-added pro-
duction. Basu and Fernald (1997) highlight that the appropriate aggregation of firm-level
elasticities and markups depends on model specifics, including how reallocations across firms

occur over the cycle. They provide a two-firm example in which the correct “aggregate” pa-

33Indeed, in the 1990s production-approach literature, markups and returns to scale were treated as equally
relevant for modeling. For example, Basu and Fernald (1997) emphasized returns to scale because of the
focus of some models at the time, but their estimates mapped to markups via equation (9).

34 Aghion et al. (2023) and De Ridder (2024) argue that good rents can morph into bad rents as technological
winners create barriers to entry, leading ultimately to reduced innovation and growth.
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rameter could be either the simple average of micro estimates or the parameter that would
be recovered from aggregate time series—depending on non-production details of household
behavior and equilibrium allocation. To date, there is no general answer to how much micro

heterogeneity needs to be preserved when calibrating representative-firm models.3

Ongoing empirical debates underscore why this heterogeneity question is so important. Rev-
enue shares vary widely across firms, and these differences are not random. Large, expanding
firms tend to have low labor shares, suggesting potentially important macro consequences
(Autor et al., 2020; Kehrig and Vincent, 2021). In rationalizing these patterns, workhorse
models often feature firm heterogeneity in productivity (Melitz, 2003) and demand elastic-
ities (Atkeson and Burstein, 2008), but typically assume common production technologies
within industries. If empirical evidence of heterogeneous output elasticities proves robust,
existing modeling frameworks will need to evolve. Moreover, the choice of how to aggregate
matters: Edmond et al. (2023) show that sales-weighted markups rise much more steeply
than cost-weighted ones, with the gap reflecting allocative inefficiency from dispersion. These
results highlight that the way heterogeneity is summarized—whether through cost-weighted,

sales-weighted, or distributional statistics—shapes the macro conclusions we draw.

Third, more research should help evaluate how the economy’s network structure shapes the
welfare consequences of markups. A long tradition of input—output analysis, from Leontief
(1941) to more recent work reviewed by Carvalho and Tahbaz-Salehi (2019) and Bagaee and
Rubbo (2023), emphasizes that the economy’s network of intermediate flows can amplify or
attenuate distortions. What matters is not only the level and dispersion of markups but also

where in the network they arise and how they propagate through production chains.

Notably, upstream and downstream markups differ fundamentally in how they propagate
through the economy. At one extreme, markups may simply redistribute income between
wages and profits without real effects, particularly if they fall entirely downstream on final
consumption goods and labor is supplied inelastically. At the other extreme, when markups
are applied upstream to intermediate inputs, they act like taxes on production, distorting
relative input use and depressing aggregate productivity. This misallocation pushes the
economy inside its production-possibilities frontier, violating the (Diamond and Mirrlees,
1971) production-efficiency theorem. Theoretical and quantitative work by Basu (1995),
Basu and Fernald (2002), Bigio and La’O (2020), and Baqaee and Farhi (2020) formalizes

35Growth accounting has long emphasized microeconomic heterogeneity in explaining macro aggregates.
Basu and Fernald (1997, 2002) added heterogeneity in markups and returns to scale to the accounting in
Jorgenson et al. (1987). The misallocation literature also emphasizes micro heterogeneity. Baqgaee and
Rubbo (2023) review the more recent literature.

52



these effects, showing how markups on upstream goods differ in their consequences from

markups applied at the final-goods stage.

At the same time, contracting arrangements shape how strongly these distortions bite. In
models with spot-market transactions, “double marginalization” compounds markups along
supply chains, magnifying inefficiencies. But if upstream and downstream firms bargain
efficiently—as often happens in long-term supplier relationships—markups need not gener-
ate misallocation, even if measured markups appear high. This observation suggests that
understanding the macroeconomic consequences of markup heterogeneity requires integrat-
ing both network structure and institutional detail. Future research can help clarify when
markups primarily redistribute income, when they distort production, and how to incorpo-

rate these differences into tractable macro models.

7 Conclusion

The production approach to markups is both powerful and fragile. Its power comes from its
minimal structure. With cost minimization and a flexible input, all we need is the input’s
share in revenue and its output elasticity to back out a markup. Its fragility comes from
the same source. Because markups are residuals, they absorb whatever the model, the data,
or the econometrics fail to capture. The implementation requires assumptions that are not

innocuous. Researchers make a series of choices, each with its own risks.

The evidence so far requires humility. Some datasets and specifications show markups rising
sharply. Others do not. As we discussed, the discrepancies may reflect non-markup frictions,
specification, data, or econometric choices. The variation tells us something important:
production-based markups depend on the validity of the auxiliary assumptions we impose.

To move forward, we need transparency, validation, robustness, and better data.

What should macroeconomists do with the evidence? We should acknowledge how much
remains uncertain, while pressing ahead on both theory and measurement. On the theoretical
side, there is no reason to wait. Markups shape resource allocation and welfare. They
interact with misallocation, innovation, network structure, and cyclical dynamics. They also
shape how shocks propagate across firms and industries. But we also need evidence on the
structures that actually drive markups, in order to guide theorizing. Measurement leaves us
with residuals. The challenge is to combine institutional knowledge and economic theory to

show what those residuals mean for growth, welfare, and policy.
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